NASA Decelerators Slow Payloads Traveling at Supersonic Speed

What will it take to land heavier spacecraft on Mars? How will engineers slow large payloads traveling at supersonic speeds in a thin Martian atmosphere? The Low Density Supersonic Decelerator (LDSD) mission will seek to answer these questions.

Posted in: Motion Control, Motors & Drives, Power Transmission, Test & Measurement, Aerospace, Machinery & Automation, News


'Sensing Skin' Detects Damage in Concrete Structures

Researchers from North Carolina State University and the University of Eastern Finland have developed new “sensing skin” technology designed to serve as an early warning system for concrete structures, allowing authorities to respond quickly to damage in everything from nuclear facilities to bridges.“The sensing skin could be used for a wide range of structures, but the impetus for the work was to help ensure the integrity of critical infrastructure such as nuclear waste storage facilities,” says Dr. Mohammad Pour-Ghaz, an assistant professor of civil, construction and environmental engineering at NC State and co-author of a paper describing the work.The skin is an electrically conductive coat of paint that can be applied to new or existing structures. The paint can incorporate any number of conductive materials, such as copper, making it relatively inexpensive.Electrodes are applied around the perimeter of a structure. The sensing skin is then painted onto the structure, over the electrodes. A computer program then runs a small current between two of the electrodes at a time, cycling through a number of possible electrode combinations.Every time the current runs between two electrodes, a computer monitors and records the electrical potential at all of the electrodes on the structure. This data is then used to calculate the sensing skin’s spatially distributed electrical conductivity. If the skin’s conductivity decreases, that means the structure has cracked or been otherwise damaged.The researchers have developed a suite of algorithms that allow them to both register damage and to determine where the damage has taken place.SourceAlso: Learn about Designing Composite Repairs and Retrofits for Infrastructure.

Posted in: Electronics & Computers, Electronic Components, Electronics, Materials, Sensors, Detectors, Test & Measurement, Communications, Semiconductors & ICs, News


Mobile Robots Help Technicians Manufacture Airplanes

A new mobile assistant is being developed to support technicians in the airplane manufacturing industry when applying sealant, measuring, and testing — without putting them at risk. In the EU project known as VALERI (Validation of Advanced, Collaborative Robotics for Industrial Applications), a European consortium is engineering a mobile robot that operates autonomously and moves independently through a production hall, side-by-side with the engineers and technicians. It is not intended to replace the technician, but instead relieve them of stressful and monotonous duties and take over inspection duties.

Posted in: Manufacturing & Prototyping, Industrial Controls & Automation, Sensors, Test & Measurement, Aerospace, Aviation, Machinery & Automation, Robotics, News


Roof Tiles Clean the Air

A team of University of California, Riverside’s Bourns College of Engineering students has developed a titanium dioxide roof tile coating that removes up to 97 percent of smog-causing nitrogen oxides.The students' calculations show that 21 tons of nitrogen oxides would be eliminated daily if tiles on one million roofs were coated with their titanium dioxide mixture. The researchers coated two identical, off-the-shelf clay tiles with different amounts of titanium dioxide, a common compound found in everything from paint to food to cosmetics. The tiles were then placed inside a miniature atmospheric chamber that the students built out of wood, Teflon, and PVC piping.The chamber was connected to a source of nitrogen oxides and a device that reads concentrations of nitrogen oxides. The students used ultraviolet light to simulate sunlight, which activates the titanium dioxide and allows it to break down the nitrogen oxides. They found the titanium dioxide coated tiles removed between 88 percent and 97 percent of the nitrogen oxides.SourceAlso: Learn about Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen.

Posted in: Remediation Technologies, Green Design & Manufacturing, Materials, Coatings & Adhesives, Test & Measurement, News


NASA Balloons Study Effects of Volcanic Eruption

A team of NASA and University of Wyoming scientists has ventured into the Australian bush to send a series of balloons aloft. The balloons will make measurements of a volcanic plume originating from neighboring Indonesia.The campaign, in Australia’s Northern Territory, is part of an effort to better understand the climate effects of volcanic eruptions.The KlAsh (Kelud Ash) experiment is based in Darwin, Australia, where smaller balloon payloads are being launched over the Indian Ocean. Larger balloons, with payloads that must be recovered, are being launched from Corroboree, a remote area about 60 miles south of Darwin.The larger balloon, filled with helium, measures about 115 by 65 feet when fully inflated.Almost all of the energy entering Earth’s climate system comes from the sun. Some of that energy is absorbed by the planet, while the rest is radiated back into space. Ash and sulfate reflect and absorb energy differently, and may also have different chemical impacts on the stratosphere.“Understanding those characteristics is important for climate models that include periodic volcanic activity,” said Terry Deshler, principal investigator for the University of Wyoming’s instrumentation.SourceAlso: Learn about Targeting and Monitoring of Volcanic Activity.

Posted in: Environmental Monitoring, Green Design & Manufacturing, Test & Measurement, Monitoring, News


New Rotary Sensor Keeps Conveyor Belts Running Smoothly

Rotary sensors can help determine the position of a moveable body in relation to an axis. They are essential to the smooth running of car engines in the automotive industry, for example. In factories, goods and products are transported from one processing station to the next via conveyor belt. For the transfer from one belt to the next to run smoothly, it must take place precisely at a specific position, which means knowing the relative position of objects on the conveyor belts as they move towards each other. This can be determined from the angle of rotation, which refers to the position of a moveable body to an axis.

Posted in: Electronics & Computers, Electronic Components, Photonics, Optics, Manufacturing & Prototyping, Industrial Controls & Automation, Consumer Product Manufacturing, Sensors, Test & Measurement, Measuring Instruments, News


Back to Basics of Electrical Measurement

Learn the basics of how to make good electrical measurements with confidence. Download our white paper now.

Posted in: Test & Measurement, White Papers