Coming Soon - The Changing Face of Robotics: Advanced Modeling and Simulation Techniques for Multibody Robotic Systems

Robotic technology has improved dramatically in the past decade, and applications are getting more complex as well. While a prior generation stunned the world by sending men to the moon in the 1960s, this generation will soon make a robot dance better than Michael Jackson.

Posted in: Upcoming Webinars, Robotics


Autonomous Robots Keep Warehouse Running Green

YLOG, a startup company in Austria, uses an intelligent and very environmentally friendly logistics system that is winning an increasing number of customers. The technology makes use of individual, freely moving Autonomous Intelligent Vehicles (AiVs) that detect each other, observe right-of-way rules, recognize one-way routes, and complete their tasks fully autonomously without intervention from or coordination by a central computer.

Posted in: Application Briefs, Articles, Motors & Drives, Machinery & Automation, Robotics


Sampling Mechanism for a Comet Sample Return Mission

A similar sampling mechanism could be deployed in dangerous situations on Earth. Goddard Space Flight Center, Greenbelt, Maryland Sample return missions have the ability to vastly increase scientific understanding of the origin, history, current status, and resource potential of solar system objects including asteroids, comets, Mars, and the Moon. However, to make further progress in understanding such bodies, detailed analyses of samples are needed from as many bodies as possible. A standoff sample collection system concept has been developed that would quickly obtain a sample from environments as varied as comets, asteroids, and permanently shadowed craters on the Moon, using vehicles ranging from traditional planetary spacecraft to platforms such as hovering rotorcraft or balloons on Mars, Venus, or Titan. The depth of penetration for this harpoon- based hollow collector was experimentally determined to be proportional to the momentum of the penetrator in agreement with earlier work on the penetration of solid projectiles. A release mechanism for the internal, removable sample cartridge was tested, as was an automatic closure system for the sample canister.

Posted in: Briefs, TSP, Machinery & Automation, Monitoring


PLC-Based Robotic Controls Versus OEM Robotic Controls

As more manufacturing facilities and distribution centers discover the benefits of robotic material handling solutions, the decision of how best to control the robot must be made. While robot original equipment manufacturers (OEMs) offer their own tightly integrated controller, recent developments have enabled control by a Programmable Logic Controller, or PLC. For facilities where PLC-based controls are already used in other machine control applications, the benefits of using one for the robot as well may be a wiser choice than the OEM controller. Let’s review PLC-based robotic control to help you determine if it’s the best choice for your application.

Posted in: Articles, Industrial Controls & Automation, Robotics


Robotic Tool Changer

The QC-160 Robotic Tool Changer from ATI Industrial Automation (Apex, NC) has a high moment capacity in a lightweight design, and features internal lock/unlock sensing and five 3/8 NPT and four ½ NPT pass-through air connections. It mounts directly to most 200-kg robots and enhances the robot’s ability to switch end-effectors automatically. The tool changer handles payloads of up to 600 pounds, and features integrated pneumatic ports and electrical connections. Other features include a patented failsafe locking mechanism to ensure high-moment capacity and strength. For Free Info Visit http://info.hotims.com/55588-313

Posted in: Products, Robotics


Hands-Free Control Interfaces for an Extravehicular Jetpack

This hands-free approach could be applicable to other robotic interfaces requiring six-DOF control inputs. Lyndon B. Johnson Space Center, Houston, Texas To enable the human mobility necessary to effectively explore near-Earth asteroids and deep space effectively, a new extravehicular activity (EVA) jetpack is under development. The new design leverages knowledge and experience gained from the current astronaut rescue device, the Simplified Aid for EVA Rescue (SAFER). Whereas the primary goal for a rescue device is to return the crew to a safe haven, in-space exploration and navigation requires an expanded set of capabilities. To accommodate the range of tasks astronauts may be expected to perform while utilizing the jetpack, it was desired to research a hands-free method of control. This hands-free control method would enable astronauts to command their motion while transporting payloads and conducting two-handed tasks.

Posted in: Briefs, TSP, Machinery & Automation, Robotics, Sensors


Artificial Immune System-Based Approach for Air Combat Maneuvering

The primary motivation for this research is to enable unmanned aircraft with intelligent maneuvering capabilities. Ames Research Center, Moffett Field, California A high level of autonomy is desired for future unmanned combat systems because lethality and survivability can be improved with much less communication bandwidth than would be necessary for preprogrammed or remotely operated systems. However, there are a number of technical challenges that must be addressed prior to implementation.

Posted in: Briefs, Machinery & Automation, Robotics, Simulation Software