New Strain Gauge Enables 'Soft Machines'

Purdue University researchers have developed a technique to embed a liquid-alloy pattern inside a rubber-like polymer to form a network of sensors. The approach may be used to produce "soft machines" made of elastic materials and liquid metals.Such an elastic technology could be used to create robots with sensory skin, as well as develop stretchable garments that interact with computers."What's exciting about the soft strain gauge is that it can detect very high strains and can deform with almost any material," said Rebecca Kramer, an assistant professor of mechanical engineering at Purdue University. "The skin around your joints undergoes about 50 percent strain when you bend a limb, so if you wanted to have sensory skin and wearable technology that tracks your movement you need to employ soft, stretchable materials that won't restrict your natural range of motion."SourceAlso: Learn about Thermal Properties of Microstrain Gauges.

Posted in: Materials, Metals, Plastics, Motion Control, Sensors, Machinery & Automation, Robotics, News

Read More >>

New Algorithms Enable Self-Assembling, Printable Robots

In two new papers, MIT researchers demonstrate the promise of printable robotic components that, when heated, automatically fold into prescribed three-dimensional configurations.One paper describes a system that takes a digital specification of a 3-D shape — such as a computer-aided design, or CAD, file — and generates the 2-D patterns that would enable a piece of plastic to reproduce it through self-folding.The other paper explains how to build electrical components from self-folding laser-cut materials. The researchers present designs for resistors, inductors, and capacitors, as well as sensors and actuators — the electromechanical “muscles” that enable robots’ movements.“We have this big dream of the hardware compiler, where you can specify, ‘I want a robot that will play with my cat,’ or ‘I want a robot that will clean the floor,’ and from this high-level specification, you actually generate a working device,” said Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT.SourceAlso: Learn about Self-Assembling, Flexible, Pre-Ceramic Composite Preforms.

Posted in: Electronics & Computers, Electronic Components, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Motion Control, Motors & Drives, Power Transmission, Sensors, Software, Computer-Aided Design (CAD), Mathematical/Scientific Software, Machinery & Automation, Robotics, News

Read More >>

Robotic Modules Transform into Configurable Furniture

EPFL scientists from the Biorobotics Laboratory (BIOROB) have developed small robotic modules that can change their shape to create reconfigurable furniture. Like Lego bricks, Roombots pieces can be stacked upon each other to create various structures. Each 22 cm-long piece, which looks like two large dice joined together, has a wireless connection. Inside are a battery and three motors that allow the module to pivot with three degrees of freedom. The modules have retractable "claws" that they use to attach to other pieces and form larger structures. With a series of rotations and connections, the modules can change shape and become any of a variety of objects and pieces of furniture. In order to metamorphose and to attach to passive elements, the Roombots need to anchor themselves to something, so the researchers developed a special surface with holes adapted to the Roombots' mechanical claws. Fixed to the walls, floor, and already existing pieces of furniture, these surfaces act as interfaces between the modules and their environment. The little robots can then climb the walls of a room, or attach themselves to "passive" elements on the furniture to form mobile tables or lamps that follow users around the room. "It could be very useful for disabled individuals to be able to ask objects to come closer to them, or to move out of the way," says Auke Ijspeert, head of the BIOROB.SourceAlso: Learn about a Kinetic Calibration Process for Flight Robotic Arms.

Posted in: Machinery & Automation, Robotics, News

Read More >>

3D-Printing Aerial Robot Mimics Tiny Bird

Scientists from Imperial College London have developed a 3D-printing Micro Aerial Vehicle (MAV) that mimics the way that swiftlets build their nests.The MAV is a quad-copter, with four blades that enable it to fly and hover. The vehicle, made from off-the-shelf components, carries in its underbelly two chemicals that create polyurethane foam when mixed, and a printing module to deliver the foam. The foam can then be used to build simple structures or repair components.The texture of the polymer exuded from the 3D printer can also be used to create ’grippers,‘ which stick onto and transport objects to different locations. The MAV could therefore pick up and remove bombs, or dispose of hazardous materials without exposing humans to danger. The next step for the team is to enable the vehicle to fly autonomously in any environment. The scientists plan to incorporate high-speed cameras and sensors on board the MAV, which will act like a satellite navigation system for tracking and controlling of the flight trajectory.SourceAlso: Learn more about NASA's Robonaut 2.

Posted in: Imaging, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Materials, Plastics, Sensors, Aerospace, Aviation, Machinery & Automation, Robotics, Defense, News

Read More >>

With New Sensors, NASA's Morpheus Preps to Land on its Own

A test flight will challenge a set of sensors to map out a 65-yard square of boulder-sized hazards and pick out a safe place to land. Mounted to an uncrewed prototype lander called Morpheus that flies autonomously several hundred feet above the ground, the sensor system will have 10 seconds to do its work. The sensor system is a 400-pound set of computers and three instruments called ALHAT (Autonomous Landing and Hazard Avoidance Technology).

Posted in: Sensors, Aerospace, Aviation, Machinery & Automation, News

Read More >>

Robonaut 2 Gets its Space Legs

Thanks to a successful launch of the SpaceX-3 flight of the Falcon 9/Dragon capsule on Friday, April 18, the lower limbs for Robonaut 2 (R2) are aboard the International Space Station (ISS). Safely tucked inside the Dragon resupply vehicle, R2’s legs are to be attached by a station crew member to Robonaut’s torso already on the orbiting outpost.Jointly developed by NASA’s Human Exploration and Operations and Space Technology mission directorates in cooperation with General Motors, R2 showcases how a robotic assistant can work alongside humans, whether tasks are done in space or on Earth in a manufacturing facility.The R2 now consists of a head and a torso with two arms and two hands. With the addition of the newly developed climbing legs, the robot can augment its chief role: to help astronauts by taking over some of their duties on the space station.Making use of toe-like fixtures—called “end effectors” that take the place of feet—R2 can use sockets and handrails to move about. With legs, the robot can lend a hand, or two, to the crew while secured to the station by at least one leg.“We’ll go from being the first humanoid robot in space to being the first mobile humanoid robot in space,” said Ron Diftler, Robonaut Project Manager within the Robotic Systems Technology Branch at the NASA Johnson Space Center. “Being mobile significantly adds to our capability.”SourceAlso: Read a "Who's Who at NASA" Q&A with a Robonaut 2 robotics engineer.

Posted in: Aerospace, Machinery & Automation, Robotics, News

Read More >>

Engineers Develop 'Simple' Robotic Swarms

University of Sheffield engineers have developed a way of making hundreds — or even thousands — of tiny robots cluster to carry out tasks. The robots do not require memory or processing power. Each robot uses just one sensor that indicates the presence of another nearby robot. Based on the sensor's findings, the robots will either rotate on the spot, or move around in a circle until one can be seen.Until now, robotic swarms have required complex programming, complicating the development of miniaturized, individual robots. With the programming created by the Sheffield team, however, nanoscale machines are possible.SourceAlso: Learn about a Kinematic Calibration Process for Flight Robotic Arms.

Posted in: Motion Control, Sensors, Machinery & Automation, Robotics, News

Read More >>