Home

NASA Robot Explores Volcanoes

Carolyn Parcheta, a NASA postdoctoral fellow based at NASA's Jet Propulsion Laboratory in Pasadena, California, and JPL robotics researcher Aaron Parness are developing robots that can explore volcanic fissures."We don't know exactly how volcanoes erupt. We have models but they are all very, very simplified. This project aims to help make those models more realistic," Parcheta said.Parcheta, Parness, and JPL co-advisor Karl Mitchell first explored this idea last year using a two-wheeled robot they call VolcanoBot 1, with a length of 12 inches (30 centimeters) and 6.7-inch (17-centimeter) wheels.VolcanoBot 2, smaller and lighter than its predecessor, will explore Hawaii's Kilauea volcano in March 2015. Parcheta's research endeavors were recently honored in National Geographic’s Expedition Granted campaign. SourceAlso: Learn about Autonomous Response for Targeting and Monitoring of Volcanic Activity.

Posted in: News, Machinery & Automation, Robotics, Measuring Instruments, Monitoring

Read More >>

NASA Advances Next-Generation 3D-Imaging Lidar

Building, fixing, and refueling space-based assets or rendezvousing with a comet or asteroid will require a robotic vehicle and a super-precise, high-resolution 3D imaging lidar that will generate real-time images needed to guide the vehicle to a target traveling at thousands of miles per hour. A team at NASA’s Goddard Space Flight Center is developing a next-generation 3D scanning lidar — dubbed the Goddard Reconfiguable Solid-state Scanning Lidar (GRSSLi) — that could provide the imagery needed to execute these orbital dances. GRSSLi is a small, low-cost, low-weight platform capable of centimeter-level resolution over a range of distances, from meters to kilometers. Equipped with a low-power, eye-safe laser; a MEMS scanner; and a single photodetector, GRSSLi will "paint" a scene with the scanning laser, and its detector will sense the reflected light to create a high-resolution 3D image at kilometer distances. A non-scanning version of GRSSLi would be ideal for close approaches to asteroids. It would employ a flash lidar, which doesn’t paint a scene with a mechanical scanner, but rather illuminates the target with a single pulse of laser light — much like a camera flash. Source:

Posted in: News, Lasers & Laser Systems, Photonics, Machinery & Automation, Robotics

Read More >>

Moving Cameras “Talk” to Identify and Track Pedestrians

University of Washington electrical engineers have developed a way to automatically track people across moving and still cameras by using an algorithm that trains the networked cameras to learn one another’s differences. The cameras first identify a person in a video frame then follow that same person across multiple camera views. With the new technology, a car with a mounted camera could take video of a scene, then identify and track humans and overlay them into the virtual 3D map on a GPS screen. The researchers are developing this to work in real time, which could help track a specific person who is dodging the police. The team also installed the tracking system on cameras placed inside a robot and a flying drone, allowing the robot and drone to follow a person, even when the instruments came across obstacles that blocked the person from view. Source:

Posted in: News, Cameras, Video, Visualization Software, Machinery & Automation, Robotics

Read More >>

Rosetta Begins Science on Comet

After more than a decade traveling through space, a robotic lander built by the European Space Agency has made the first-ever soft landing of a spacecraft on a comet. Mission controllers at ESA's mission operations center in Germany received a signal confirming that the Philae lander had touched down on comet 67P/Churyumov-Gerasimenko on November 12.

Posted in: News, Machinery & Automation, Robotics

Read More >>

Killer Robots - Army Studies Challenges of Remote Lethality

The military has used and experimented with robots that perform functions such as scouting and surveillance, carrying supplies and detecting and disposing of improvised homemade bombs. However, when it comes to integrating lethality, such as a weapon capable of firing 10 rounds per second onto an unmanned ground vehicle, issues arise such as safety, effectiveness and reliability, as well as military doctrine on how much human involvement is required.

Posted in: News, Machinery & Automation, Robotics

Read More >>

Ocean Gliders Measure Melting Polar Ice

The rapidly melting ice sheets on the coast of West Antarctica are a potentially major contributor to rising ocean levels worldwide. Although warm water near the coast is thought to be the main factor causing the ice to melt, the process by which this water ends up near the cold continent is not well understood. Using robotic ocean gliders, Caltech researchers have now found that swirling ocean eddies, similar to atmospheric storms, play an important role in transporting these warm waters to the Antarctic coast—a discovery that will help the scientific community determine how rapidly the ice is melting and, as a result, how quickly ocean levels will rise. "When you have a melting slab of ice, it can either melt from above because the atmosphere is getting warmer or it can melt from below because the ocean is warm," explains lead author Andrew Thompson, assistant professor of environmental science and engineering. "All of our evidence points to ocean warming as the most important factor affecting these ice shelves, so we wanted to understand the physics of how the heat gets there." Because the gliders are small—only about six feet long—and are very energy efficient, they can sample the ocean for much longer periods than large ships can. When the glider surfaces every few hours, it "calls" the researchers via a mobile phone–like device located on the tail. The communication allows the researchers to almost immediately access the information the glider has collected. Like airborne gliders, the bullet-shaped ocean gliders have no propeller; instead they use batteries to power a pump that changes the glider's buoyancy. When the pump pushes fluid into a compartment inside the glider, the glider becomes denser than seawater and less buoyant, thus causing it to sink. If the fluid is pumped instead into a bladder on the outside of the glider, the glider becomes less dense than seawater—and therefore more buoyant—ultimately rising to the surface. Like airborne gliders, wings convert this vertical lift into horizontal motion. Source Also: Learn about Remote Sensing of Ice Sheets and Snow.

Posted in: News, Batteries, Environmental Monitoring, Machinery & Automation, Robotics, Measuring Instruments, Monitoring

Read More >>

Microbot Muscles Self-Assemble and Flex

In a step toward robots smaller than a grain of sand, University of Michigan researchers have shown how chains of self-assembling particles could serve as electrically activated muscles in the tiny machines."We are inspired by ideas of microscopic robots," said Michael Solomon, a professor of chemical engineering. "They could work together and go places that have never been possible before."Solomon and his group demonstrated that some gold plating and an alternating electric field can help oblong particles form chains that extend by roughly 36 percent when the electric field is on.The team started with particles similar to those found in paint, with diameters of about a hundredth the width of a strand of hair. They stretched these particles into football shapes and coated one side of each football with gold. The gilded halves attracted one another in slightly salty water—ideally about half the salt concentration in the sports drink Powerade. The more salt in the water, the stronger the attraction.Left to their own devices, the particles formed short chains of overlapping pairs, averaging around 50 or 60 particles to a chain. When exposed to an alternating electric field, the chains seemed to add new particles indefinitely. But the real excitement was in the way that the chains stretched."We want them to work like little muscles," said Sharon Glotzer, the Stuart W. Churchill Professor of Chemical Engineering. "You could imagine many of these fibers lining up with the field and producing locomotion by expanding and contracting."SourceAlso: Learn about Microelectronic Repair Techniques for Wafer-Level Integration.

Posted in: News, Machinery & Automation, Robotics

Read More >>