Home

Products of Tomorrow: March 2015

The technologies NASA develops don’t just blast off into space. They also improve our lives here on Earth. Life-saving search-and-rescue tools, implantable medical devices, advances in commercial aircraft safety, increased accuracy in weather forecasting, and the miniature cameras in our cellphones are just some of the examples of NASA-developed technology used in products today.

Posted in: Articles, Products, Aviation, Electronics & Computers, Detectors, Sensors

Read More >>

Smart-Grid-Ready Instrumentation

The term “smart grid” is an umbrella term used to refer to new technologies that aim to address today’s electrical power grid challenges. At a high level, these technologies address challenges associated with grid reliability and reactive maintenance, renewables integration, and disturbance detection. One way to help address these challenges is to push decision-making and intelligence closer to the grid, embedded within flexible instrumentation to achieve faster response times, better bandwidth utilization, and functionality field upgrades that will keep field instruments up-to-date with the latest algorithms and methodologies to monitor and protect the grid.

Posted in: Articles, Electronics & Computers

Read More >>

ACES ToolSuite

Langley Research Center, Hampton, Virginia The NASA Langley Aeronautics Systems Analysis Branch (ASAB) is heavily involved in research studies to evaluate new and emerging concepts targeted at improving the National Airspace System (NAS). The primary tool used by ASAB to perform these studies is the Airspace Concept Evaluation System (ACES), a medium-fidelity, NAS-wide simulation environment.

Posted in: Briefs, TSP, Electronics & Computers, Simulation Software

Read More >>

Modeling for Partitioned and Multicore Flight Software Systems

NASA’s Jet Propulsion Laboratory, Pasadena, California The current flight software approach is monolithic in nature. Every module has tentacles that reach deep within dozens of other software modules. Because of these interdependencies between modules, functionality is difficult to extract and reuse for other missions.

Posted in: Briefs, TSP, Aviation, Electronics & Computers

Read More >>

CryoSim

John F. Kennedy Space Center, Florida In the context of systems health management, simulations serve many uses. For one, the underlying physical models can be used by model-based health management tools to develop diagnostic and prognostic models. These simulations should incorporate both nominal and faulty behavior with the ability to inject various faults into the system. Such simulations can therefore be used for operator training, as well as for developing and prototyping health management algorithms.

Posted in: Briefs, TSP, Electronics & Computers, Simulation Software

Read More >>

Building Blocks for the Rapid Development of Parallel Simulations

Goddard Space Flight Center, Greenbelt, Maryland Scientists need to be able to quickly develop and run parallel simulations without writing low-level message passing codes using compiled languages such as C/C++/Fortran. Traditionally, high-level languages that support rapid development, such as MATLAB, IDL, Mathematica, and Python, have not addressed parallel computing needs. Other parallel tools for high-level languages are very early in the development process and not mature, are very expensive and not open source, are typically limited to one or two models of parallel computing, do not allow collaborative parallel computing, have not fully addressed error handling, and are not asynchronous in nature.

Posted in: Briefs, TSP, Electronics & Computers, Simulation Software

Read More >>

Automated Multibody Response (AMBER)

Lyndon B. Johnson Space Center, Houston, Texas AMBER is an automated tool for performing transient loads analysis of structural systems composed of one or more flexible bodies. Each body is initially supplied in Craig-Bampton form. Two basic solution approaches are available: traditional system assembly and multibody. The traditional approach is better suited for linear systems or for comparison to legacy analysis; the multibody approach is better suited for systems having gap or friction nonlinearities at the body-to-body interfaces, or for non-traditional damping.

Posted in: Briefs, Electronics & Computers

Read More >>