Eliminating the Need for Payload-Specific Coupled Loads Analyses Without Mission Risk

Marshall Space Flight Center, Alabama Amore efficient structural verification process for small satellites has been demonstrated. This new process eliminates the need for payload-specific coupled loads analysis (CLA) and simplifies structural testing while not increasing mission risk. The process entails the following:

Posted in: Briefs, Electronics & Computers, Electronics & Computers, Software


Moon Tours Android

NASA’s Jet Propulsion Laboratory, Pasadena, California This Android app provides a native interface to the Lunar Mapping and Modeling Portal’s (LMMP) lunar data archive and analysis tools. It complements the iOS app previously released, incorporating a very similar feature set. Both apps contain a subset of the functionality available in the desktop/Web version. Compared to the iOS version of the LMMP, the Android version provides the additional tools necessary to perform elevation analysis and perimeter/area measurements.

Posted in: Briefs, TSP, Electronics & Computers, Electronics & Computers, Software


Implementing High Density Embedded Computing (HDEC) Solutions

High Density Embedded Computing solutions are solving large data throughput needs in signals intelligence, ground control, and homeland security applications. This guide focuses on how to efficiently implement these technologies including the expanded availability of native PCI Express 3.0 interfaces.

Posted in: White Papers, Defense, Electronics, Electronics & Computers, Electronics & Computers, Software


Full-Wave Matching Circuit Optimization Shortens Design Iterations

Full-wave matching circuit optimization (FW-MCO) is a new technology introduced by Remcom, which combines full wave 3D EM simulation and circuit optimization to solve an age-old RF problem:determining which component values provide the desired match for a given matching network layout.

Posted in: White Papers, Communications, Electronics, Electronics & Computers, Electronics & Computers, Software


The Advanced Data Analytics Platform (ADAPT): Concept, Design, Architecture, and Operation

Goddard Space Flight Center, Greenbelt, Maryland NASA scientists are uniquely positioned to research and understand the processes affecting the Earth’s climate. To study these important processes, scientists must address the Big Data challenges posed by working with massive amounts of observational and climate model output data. The Advanced Data Analytics Platform (ADAPT) is a cyber infrastructure resource specifically designed to reduce the friction between scientists and data. The system includes a high-performance storage cloud surrounded by large-scale compute resources. A very high-performing network enables fast access to the data stored within ADAPT. Furthermore, the system allows users to bring their applications to the data and define the environment in which those applications run. The science results can then be stored for future analysis or shared through static and dynamic data services within ADAPT without having to move the data or make additional copies. The agility, flexibility, and extensibility of the system make it ideal for NASA scientists to produce science results quickly by analyzing large data sets.

Posted in: Briefs, TSP, Electronics & Computers


Orion Heat Shield Thermal Mapping Tool

The Orion Heat Shield Mapping Tool collects data from a set of output files from various re-entry thermal response codes, interpolates the data, and maps the analysis code data onto a finely meshed finite element model.

Posted in: Briefs, Electronics & Computers


Distributed User Interface Management System for Interactive Collaborative Environments

This technology can be used in applications with complex user interfaces, such as control rooms, emergency and combat operations, and telemedicine.The Ground Systems Development and Operations (GSDO) Smart Firing Room Project aims to create a firing room using cutting-edge technologies of today that are expected to be the state-of-the-art for the 2020s. One aspect of this project is providing a seamless Interactive Collaborative Environment (ICE) across a diverse array of user-facing devices — numerous screens of varying sizes, personal mobile devices, and natural user interface (NUI) sensors for multi-touch, gesture, and voice inputs. Applications accessible through the ICE are expected to provide Distributed User Interfaces (DUIs) that support collaborative features such as sharing applications with remote users, multi-user interaction for collaborative editing, and modular User Interfaces (UIs) to support customized workspaces spread across multiple devices. Using current technologies, developing an application with a DUI supporting such a wide variety of platforms is extremely costly due to the tight coupling between UIs, host platforms, and the application logic.

Posted in: Briefs, TSP, Electronics & Computers, Information Sciences


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.