Synthetic Imaging Maneuver Optimization — SIMO

Goddard Space Flight Center, Greenbelt, Maryland Space-based interferometry missions have the potential to revolutionize imaging and astrometry, providing observations of unprecedented accuracy. Realizing the full potential of these interferometers poses several significant technological challenges. These include the efficient maneuvering of multiple collectors to various baselines to make the requisite observations; regulating the path-length of science light from the collecting telescopes to the combining instrument with nanometer accuracy, despite the presence of vibration induced by internal and external disturbance sources; and demonstrating through hardware-in-the-loop simulation that the numerous spacecraft (SC) subsystems can be coordinated to perform such challenging observations in a precise, efficient, and robust manner.

Posted in: Briefs, TSP, Electronics & Computers


A Large-Eddy Simulation Model of the Atmospheric Boundary Layer

The model includes the interaction of various physical processes, including turbulence, clouds, precipitation, and radiation. NASA’s Jet Propulsion Laboratory, Pasadena, California The atmospheric boundary layer is the lowermost layer of the atmosphere and is host to a plethora of physical processes that significantly affect weather, climate, and air quality. In many applications, detailed information about the boundary layer is required at high temporal and spatial resolution. The main purpose of the current model is to provide accurate and finely resolved inspace and time predictions of the atmospheric boundary layer. High-resolution predictions of the boundary layer are typically pertinent in the development and evaluation of weather and climate models, in fundamental studies of atmospheric dynamics including clouds and precipitation, the dispersion of pollutants, and the development of remote sensing instruments.

Posted in: Briefs, Electronics & Computers, Simulation Software


Detection of Carried and Dropped Objects in Surveillance Video

This software analyzes a video input stream and automatically detects carried and dropped objects in near-real-time. NASA’s Jet Propulsion Laboratory, Pasadena, California DARPA’s Mind’s Eye Program aims to develop a smart camera surveillance system that can autonomously monitor a scene and report back human-readable text descriptions of activities that occur in the video. An important aspect is whether objects are brought into the scene, exchanged between persons, left behind, picked up, etc. While some objects can be detected with an object-specific recognizer, many others are not well suited for this type of approach. For example, a carried object may be too small relative to the resolution of the camera to be easily identifiable, or an unusual object, such as an improvised explosive device, may be too rare or unique in its appearance to have a dedicated recognizer. Hence, a generic object detection capability, which can locate objects without a specific model of what to look for, is used. This approach can detect objects even when partially occluded or overlapping with humans in the scene.

Posted in: Briefs, TSP, Cameras, Electronics & Computers, Data Acquisition, Detectors


Signal Processing Software for Remote Vital Sign Monitoring

NASA’s Jet Propulsion Laboratory, Pasadena, California This software provides the processing for a non-contact system that remotely estimates the heart rate and respiration rate of individuals as they carry on daily activities, and also enables detection of heart and respiration rate through walls.

Posted in: Briefs, TSP, Electronics & Computers, Patient Monitoring, Data Acquisition


Visualization of fMRI Network Data

NASA’s Jet Propulsion Laboratory, Pasadena, California Functional connections within the brain can be revealed through functional magnetic resonance imaging (fMRI), which shows simultaneous activations of blood flow in the brain during response tests. However, fMRI specialists currently do not have a tool for visualizing the complex data that comes from fMRI scans. They work with correlation matrices that table what functional region connections exist, but they have no corresponding visualization.

Posted in: Briefs, TSP, Visualization Software, Electronics & Computers, Data Acquisition


Viewpoints Software for Visualization of Multivariate Data

Ames Research Center, Moffett Field, California Viewpoints software allows interactive visualization of multi-variate data using a variety of standard techniques. The software is built exclusively from high-performance, cross-platform, open-source, standards-compliant languages, libraries, and components. The techniques included are:

Posted in: Briefs, Visualization Software, Electronics & Computers, Data Acquisition, Mathematical/Scientific Software


Rule-Based Analytic Asset Management for Space Exploration Systems (RAMSES)

Radio Frequency Identification (RFID) systems have applications in tracking and managing small shipping containers and packages in the commercial supply chain. Stennis Space Center, Mississippi Human space systems, such as the International Space Station (ISS) and future planned missions to the lunar surface and beyond, require the crew’s ability to locate and manage the physical resources that are required for use to achieve mission objectives. However, the large number of assets, ranging from expensive, specialized equipment, to food, water, and medical consumables for the crew is an overwhelming management problem. These assets are stored in numerous containers that are sometimes nested within other containers, frequently removed from one container and placed in another location, consumed, and/or used, and then discarded. Additionally, sometimes the containers themselves are moved. The challenge is to track and manage these assets so that the crew can readily locate items and ground controllers can identify when there is a need to provide sufficient resupply for the mission.

Posted in: Briefs, Electronics & Computers, Machinery & Automation, Robotics