Home

Force-Control Algorithm for Surface Sampling

A G-FCON algorithm is designed for small-body surface sampling. It has a linearization component and a feedback component to enhance performance. The algorithm regulates the contact force between the tip of a robotic arm attached to a spacecraft and a surface during sampling. The control algorithm is insensitive to the surface properties, enabling it to maintain the right contact force for a wide range of surface compliance properties.

Posted in: Briefs, Information Sciences

Read More >>

Problem Reporting System

The Problem Reporting System (PRS) is a Web application, running on two Web servers (load-balanced) and two database servers (RAID-5), which establishes a system for submission, editing, and sharing of reports to manage risk assessment of anomalies identified in NASA’s flight projects. PRS consolidates diverse anomaly- reporting systems, maintains a rich database set, and incorporates a robust engine, which allows tracking of any hardware, software, or paper process by configuring an appropriate life cycle. Global and specific project administration and setup tools allow lifecycle tailoring, along with customizable controls for user, e-mail, notifications, and more. PRS is accessible via the World Wide Web for authorized user at most any location.

Posted in: Briefs, Information Sciences

Read More >>

Tool for Merging Proposals Into DSN Schedules

A Practical Extraction and Reporting Language (Perl) script called “merge7da” has been developed to facilitate determination, by a project scheduler in NASA’s Deep Space Network, of whether a proposal for use of the DSN could create a conflict with the current DSN schedule. Prior to the development of merge7da, there was no way to quickly identify potential schedule conflicts: it was necessary to submit a proposal and wait a day or two for a response from a DSN scheduling facility. By using merge7da to detect and eliminate potential schedule conflicts before submitting a proposal, a project scheduler saves time and gains assurance that the proposal will probably be accepted. merge7da accepts two input files, one of which contains the current DSN schedule and is in a DSN-standard format called “7da.”

Posted in: Briefs, Information Sciences

Read More >>

Simulation of Stochastic Processes by Coupled ODE-PDE

A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.

Posted in: Briefs, TSP, Information Sciences

Read More >>

Genetic Algorithm Optimizes Q-LAW Control Parameters

A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto- optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution.

Posted in: Briefs, TSP, Information Sciences

Read More >>

Quantum-Inspired Maximizer

A report discusses an algorithm for a new kind of dynamics based on a quantum-classical hybrid-quantum-inspired maximizer. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen “computational” potential. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables, using classical methods. Such optimal combination of characteristics is a perfect match for quantum-inspired computing. As an application, an algorithm for global maximum of an arbitrary integrable function is proposed. The idea of the proposed algorithm is very simple: based upon the Quantum-inspired Maximizer (QIM), introduce a positive function to be maximized as the probability density to which the solution is attracted. Then the larger value of this function will have the higher probability to appear.

Posted in: Briefs, TSP, Information Sciences

Read More >>

Spiking Neurons for Analysis of Patterns

High-performance pattern-analysis systems could be implemented as analog VLSI circuits. Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern- analysis and pattern- recognition computational systems. These neurons are represented by a mathematical model denoted the state- variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets.

Posted in: Briefs, TSP, Information Sciences

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.