Executive Perspectives: Internet of Things

ALEX IUORIO Senior Vice President, Supplier Management and Business Development Avnet Electronics Marketing Americas Phoenix, AZ www.em.avnet.com

In a 1926 interview, inventor Nikola Tesla stated: “When wireless [technology] is perfectly applied, the whole Earth will be converted into a huge brain.” Though Tesla’s remark was made four decades before the earliest incarnations of Internet technology were introduced by the U.S. Advanced Research Projects Agency, it is an uncanny depiction of the power and potential we see today from the Internet of Things (IoT).

Posted in: Articles, Aerospace, Electronics & Computers, Internet of things, Sensors and actuators, Wireless communication systems
Read More >>

Full-Wave Matching Circuit Optimization Shortens Design Iterations

Full-wave matching circuit optimization (FW-MCO) is a new technology introduced by Remcom, which combines full wave 3D EM simulation and circuit optimization to solve an age-old RF problem:determining which component values provide the desired match for a given matching network layout.

Posted in: White Papers, Communications, Electronics, Electronics & Computers, Electronics & Computers, Software
Read More >>

The Advanced Data Analytics Platform (ADAPT): Concept, Design, Architecture, and Operation

Goddard Space Flight Center, Greenbelt, Maryland

NASA scientists are uniquely positioned to research and understand the processes affecting the Earth’s climate. To study these important processes, scientists must address the Big Data challenges posed by working with massive amounts of observational and climate model output data. The Advanced Data Analytics Platform (ADAPT) is a cyber infrastructure resource specifically designed to reduce the friction between scientists and data. The system includes a high-performance storage cloud surrounded by large-scale compute resources. A very high-performing network enables fast access to the data stored within ADAPT. Furthermore, the system allows users to bring their applications to the data and define the environment in which those applications run. The science results can then be stored for future analysis or shared through static and dynamic data services within ADAPT without having to move the data or make additional copies. The agility, flexibility, and extensibility of the system make it ideal for NASA scientists to produce science results quickly by analyzing large data sets.

Posted in: Briefs, TSP, Electronics & Computers, Analysis methodologies, Big data, Cloud computing, Computer software and hardware, Weather and climate
Read More >>

Orion Heat Shield Thermal Mapping Tool

The Orion Heat Shield Mapping Tool collects data from a set of output files from various re-entry thermal response codes, interpolates the data, and maps the analysis code data onto a finely meshed finite element model.

Posted in: Briefs, Electronics & Computers, Finite element analysis, Data acquisition and handling, Thermodynamics, Spacecraft
Read More >>

Distributed User Interface Management System for Interactive Collaborative Environments

This technology can be used in applications with complex user interfaces, such as control rooms, emergency and combat operations, and telemedicine.

The Ground Systems Development and Operations (GSDO) Smart Firing Room Project aims to create a firing room using cutting-edge technologies of today that are expected to be the state-of-the-art for the 2020s. One aspect of this project is providing a seamless Interactive Collaborative Environment (ICE) across a diverse array of user-facing devices — numerous screens of varying sizes, personal mobile devices, and natural user interface (NUI) sensors for multi-touch, gesture, and voice inputs. Applications accessible through the ICE are expected to provide Distributed User Interfaces (DUIs) that support collaborative features such as sharing applications with remote users, multi-user interaction for collaborative editing, and modular User Interfaces (UIs) to support customized workspaces spread across multiple devices. Using current technologies, developing an application with a DUI supporting such a wide variety of platforms is extremely costly due to the tight coupling between UIs, host platforms, and the application logic.

Posted in: Briefs, TSP, Electronics & Computers, Information Sciences, Communication protocols, Computer software and hardware, Spacecraft
Read More >>

Design Reference Mission Tool for Exoplanet Starshade Mission Study

This approach is nearly optimal for each observational tier.

NASA’s Jet Propulsion Laboratory, Pasadena, California

The Design Reference Mission (DRM) tool was developed to support the Exo-Starshade (Exo-S) Science and Technology Definition Team for modeling both the Dedicated (30-m starshade, 1.1-m telescope) and Rendezvous (34-m starshade, 2.4-m telescope) missions. The DRM describes the sequence of observations to be performed and estimates the number of planets that will be detected and characterized. It is executed with a MATLAB-based tool developed for the Exo-S Study.

Posted in: Briefs, TSP, Electronics & Computers, Information Sciences, CAD, CAM, and CAE, Optics, Spacecraft
Read More >>

Data Parallel Line Relaxation Code (DPLR) Version 3.05

Ames Research Center, Moffett Field, California

The Reacting Flow Environments branch at NASA ARC is interested in characterizing the aerothermal environment of three main classes of problem: planetary entry vehicles, reusable launch vehicles (RLVs), and arc-jet (or other ground test) flow simulations. Each of these problem classes has unique physical characteristics, the understanding of which is at the cutting edge of the field. Proper modeling of the relevant physics is required to accurately simulate the aerothermal environments of these problem classes. These include, but are not limited to, chemical non-equilibrium, thermal non-equilibrium, shock layer radiation, surface catalycity, and thermal protection system material interaction with the aerothermal environment.

Posted in: Briefs, Electronics & Computers, Information Sciences, Computational fluid dynamics, Test equipment and instrumentation, Thermal testing, Entry, descent, and landing, Reusable launch vehicles and shuttles
Read More >>

Front End Data System (FEDS) Version 10.0

Goddard Space Flight Center, Greenbelt, Maryland

In traditional missions at NASA, ground systems were normally custom-built for each project. Additionally, there would be separate ground systems for each part of the spacecraft as well as a totally separate ground system for mission operations. Each of these generally interfaced through non-standard protocols. These ground systems were very expensive to develop, required expensive custom hardware, and required a large investment of time in order to verify the plethora of interfaces between the different ground systems. Non-standard interfaces between various components required extensive engineering and testing efforts.

Posted in: Briefs, TSP, Electronics & Computers, Communication protocols, Ground support, Spacecraft
Read More >>

Link Complexity Scheduling Algorithm

NASA’s Jet Propulsion Laboratory, Pasadena, California

NASA’s Deep Space Network (DSN) provides communication and other services for planetary exploration for both NASA and international users. The DSN operates antennas at three complexes in California, Spain, and Australia, with the longitudinal distribution of the complexes enabling full sky coverage and generally providing some overlap in spacecraft visibility. Beginning in 2018, the DSN will be transitioning to a remote operations paradigm where local dayshift operators at each complex will be preparing and staffing the links (or contacts) for all antennas in the DSN. In addition, the number of simultaneous links an operator will be required to support will increase from two to three. Without tools to manage the increased link complexity, there is a risk that operators will be overloaded.

Posted in: Briefs, TSP, Electronics & Computers, Mathematical models, Antennas, Satellite communications, Personnel
Read More >>

BUMPER-CEV Micrometeoroid and Orbital Debris Risk Assessment Code Rev. A

Lyndon B. Johnson Space Center, Houston, Texas

BUMPER-CEV Version 1.71 is used to perform micrometeoroid/orbital debris (MMOD) risk assessments for the Orion Multi-Purpose Crew Vehicle (MPCV) spacecraft. BUMPER is the primary risk analysis program used by NASA to provide for reliable and safe operations of spacecraft exposed to MMOD impacts. When provided with the physical shape and orbital parameters of a spacecraft, and a clear definition of failure, BUMPER calculates the risk of failure from MMOD impacts for all surfaces on a vehicle. Thousands of hypervelocity impact tests have been performed on representative samples of dozens of spacecraft shields and subsystems, thermal protection system (TPS) materials, and other spacecraft components to determine MMOD impact parameters at the failure limits of the various subsystems. The resulting verified ballistic limit equations and damage formulas are coded in BUMPER. Different versions of BUMPER have been created for ISS (International Space Station), Shuttle, and other spacecraft that differ in the ballistic limit subroutines embedded in the code, as well as the user prompts and other code to control execution and output of the code.

Posted in: Briefs, Electronics & Computers, Computer software and hardware, Particulate matter (PM), Crashworthiness, Risk assessments, Spacecraft
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.