Special Coverage

Transducer-Actuator Systems for On-Machine Measurements and Automatic Part Alignment
Wide-Area Surveillance Using HD LWIR Uncooled Sensors
Heavy Lift Wing in Ground (WIG) Cargo Flying Boat
Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space
Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines
Vibration Tables Shake Up Aerospace and Car Testing
Supercomputer Cooling System Uses Refrigerant to Replace Water

Machine Vision System

This system rapidly recognizes and locates surface shapes in range images.

A number of instruments have been built to obtain range images — a two-dimensional array of numbers that gives the depth of a scene along many directions from a central point in the instrument. Instead of measuring the brightness of many points in a scene, as in a television camera, these instruments measure where each point is in a three-dimensional space. Both range images and the more conventional intensity images from digital cameras have been used in the computer vision research community to determine the pose of observed objects or surface shapes. “Pose” refers to a complete description of an object's position and orientation. For a rigid object, this requires six numbers — such as X, Y, Z, pitch, yaw, and roll — or six equivalent coordinates. The previous methods for pose estimation all suffer from either a lack of generality or from time inefficiency.

Posted in: Briefs, Imaging, Artificial intelligence, Imaging, Imaging and visualization, Artificial intelligence, Imaging, Imaging and visualization, Product development

Ensuring Part Quality in Industrial Metal Additive Manufacturing

Concept Laser
Grapevine, TX
For more info click here

Now that metal additive manufacturing (AM) is creating fully functional industrial parts, many OEMs are taking a closer look at how the technology might support their individual production goals. Interest has also been piqued by the commitment to AM of some major companies. “I think the news about the GE Leap engine fuel nozzle really resonated throughout industry,” said Doug Hedges, President and COO of Sintavia LLC, a metal AM service provider for aerospace, defense, and other industries. “That got everyone's attention, and certainly increased the pace of inquiries for us.” The nozzle, produced internally at GE, was the first 3D-printed part certified by the U.S. Federal Aviation Administration (FAA) to fly inside a commercial jet engine.

Posted in: Application Briefs, Manufacturing & Prototyping, Metals, Additive manufacturing, Metallurgy, Parts, Quality assurance, Quality assurance

Lock-In Imaging System for Detecting Disturbances in Fluid

The aircraft-based technology can detect irregular motion of transparent air.

NASA's Langley Research Center has developed an aircraft-based turbulence and vortex detection system. Turbulence and vortices in the front-flight path are very dangerous for airplanes. Especially when an airplane is approaching the airfield to land, the altitude near the airfield is very low, and the vortices and air turbulence near the ground can cause the airplane to become unstable. Because the vortices and turbulence are just an irregular motion of transparent air, visual detection is very difficult. The NASA Langley invention is designed to detect the irregular motion of transparent air in the front-flight path from a few hundred meters to kilometers.

Posted in: Briefs, Imaging, Imaging, Imaging and visualization, Imaging, Imaging and visualization, Product development, Turbulence

Using Formal Methods for Engineering Embedded Systems

Between 1985 and 1987, a radiation therapy device called the Therac-25 was involved in at least six incidents in which the device delivered massive overdoses of radiation. The patients involved suffered radiation burns and symptoms of radiation poisoning. Three of those patients eventually died, all because of a latent software bug. A race condition had gone undetected. It was a test case no one had thought to define.

Posted in: Articles, Software, Embedded software, Embedded software, Medical equipment and supplies, Systems engineering, Quality assurance, Quality assurance

Reducing Inaccuracies in Force/Haptic Feedback Systems

This novel algorithm automatically compensates for the errors introduced by physical factors, enabling the control system to adjust the applied force accurately.

Researchers at NASA's Armstrong Flight Research Center have developed a new technology to reduce inaccuracies in force/haptic feedback devices and systems. Used at NASA in aircraft simulations for force feedback pilot controls, these systems involve a servomotor applying precise force to a specific point based on very accurate measurements. However, because the force instrumentation often cannot be placed directly at the point of interest, a mechanical assembly is used, linking the force transducer to the target point. Unfortunately, this mechanical assembly introduces inaccuracies due to its own forces of gravity, friction, and inertia.

Posted in: Briefs, Mechanical Components, Computer simulation, Flight control systems, Flight control systems, Reliability, Reliability

PLOT3D 4.1

PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools that help the scientist visualize the simulations can be of tremendous aid.

Posted in: Briefs, Software, Computational fluid dynamics, Mathematical models, Imaging, Imaging and visualization, Imaging, Imaging and visualization

Curved Sensor Improves Image Quality Captured with Digital Cameras

This sensor demonstrates significantly sharper images and a practical approach for curving off-the-shelf image sensors.

In dark environments, it is often difficult to get a clear, high-quality image. To address this problem, a method was developed for spherically curving the flat image sensors found in digital cameras. The curved sensors could be used to create better cameras for surveillance, head-mounted displays, and advancements in autonomous vehicle navigation.

Posted in: Briefs, Imaging, Optics, Sensors and actuators, Optics, Sensors and actuators, Product development

Electrochemical Method for Removing Pollutants from Water

This method removes even extremely low levels of organic contaminants such as pesticides, chemical waste products, and pharmaceuticals.

When removing very dilute concentrations of pollutants from water, existing separation methods tend to be energy- and chemical-intensive. A new method was developed that could provide a selective alternative for removing even extremely low levels of unwanted compounds. The method relies on an electrochemical process to selectively remove organic contaminants such as pesticides, chemical waste products, and pharmaceuticals, even when these are present in small, yet dangerous concentrations. The approach also addresses key limitations of conventional electrochemical separation methods such as acidity fluctuations and losses in performance that can happen as a result of competing surface reactions.

Posted in: Briefs, Green Design & Manufacturing, Water treatment, Energy conservation, Research and development, Chemicals

Structural Health Monitoring System/Method Using Electroactive Polymer Fibers

Potential applications include impact, delamination, and fatigue crack sensing.

NASA's Langley Research Center has developed a novel polymer material that can be utilized as a real-time structural health monitoring sensor. The material is electroactive and generates a signal in response to a mechanical force. The material is also highly elastic, which allows for a large range of measurable strain levels, and is highly durable.

Posted in: Briefs, Sensors, Sensors and actuators, Sensors and actuators, Cardiovascular system, Product development, Fibers, Polymers

Product of the Month: August 2017

Harwin, Salem, NH, announced the SYCAMORE surface-mount socket that provides pin retention and durability for high-volume applications manufactured using automated systems. The capacitor's design features three points of contact, providing continuity and robustness. Key markets include gas detection systems, metering systems, and other applications that require modules and devices such as field-replaceable parts or temperature-sensitive components to be mounted to a printed circuit board. The single-part SMT socket design features a profile of 0.3 mm above the PCB. Available in top and bottom entry versions, it accepts 1.0 or 1.50 mm-diameter pins, and is open-ended for unlimited mating pin depth. It is manufactured from beryllium copper, and contacts are gold-plated to ensure high conductivity over a temperature range of -50 to +125 °C.

Posted in: Products, Manufacturing & Prototyping

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.