Special Coverage

Home

Real-Time LiDAR Signal Processing FPGA Modules

Goddard Space Flight Center, Greenbelt, Maryland A scanning LiDAR, by its inherent nature, generates a great deal of raw digital data. To generate 3D imagery in real time, the data must be processed as quickly as possible. One method of discerning time-of-flight of a laser pulse for a LiDAR application is correlating a Gaussian pulse with a discretely sampled waveform from the LiDAR receiver.

Posted in: Briefs, TSP

Read More >>

Advanced, Ultra-Low-Loss, High-Frequency Package Module

This module could improve performance of radiometers, high-resolution spectrometers, radars, and communication receivers and/or transmitters. NASA’s Jet Propulsion Laboratory, Pasadena, California As electronic circuits approach submillimeter wavelength frequencies (300 GHz) and higher, the traditional low-loss method of packaging electronic circuits in waveguide modules for guiding the signal requires more attention. The reasons are that circuits at higher frequencies have lower signal power levels due to limited gain and output power of semiconductor devices. As a result, the power lost by signals in the waveguide propagation environment becomes even more important at higher frequencies. In addition, previous efforts have based higher-frequency waveguide modules on existing lower-frequency module concepts and internal components.

Posted in: Briefs

Read More >>

Miniature, Multi-Functional, Self-Braking Vehicle

This vehicle is actuated by piezoelectric stacks through the fuselage walls. NASA’s Jet Propulsion Laboratory, Pasadena, California A novel, miniature, low-mass vehicle has been created that is driven by piezoelectric stacks and a resonance structure. Preliminary tests on similar mechanisms that are used to transmit electrical power across the wall showed efficiencies of the order of 90%. The transmitted mechanical power, and signals through metallic walls using the direct and indirect piezoelectric effects in similar motors, is of the order of 50%. The transmitted power is generated inside the vehicle body, and the mechanism is applicable to any robotic system that may require an ambulation of locomotion mechanism such as a rover, a miniature vehicle, a crawler, or a flying device.

Posted in: Briefs, TSP

Read More >>

Pulse-Echo Probe Mounting Fixture for Blind Alignment on Pipes

This technology enables an effective, real-time, in-service health monitoring system for steam pipes. NASA’s Jet Propulsion Laboratory, Pasadena, California The probe and its mounting fixture are critical parts of the health monitoring of steam pipes. A high-temperature, piezoelectric transducer generates and receives ultrasonic waves, and the probe has to transmit the wave normal to the pipe surface. The mounting fixture is designed to allow for alignment of the probe even without a reference reflection, and thus enables blind alignment. In order to allow aligning of the probe normal to the surface of potential water condensation, and to secure intimate contact to the pipe surface, a novel mounting fixture was conceived and developed.

Posted in: Briefs, TSP

Read More >>

Zero-Gravity Mobile Robot Using ON/OFF Adhesive Pads and Inchworm Mechanism

The robot has applications in military reconnaissance, and as a commercial toy. NASA’s Jet Propulsion Laboratory, Pasadena, California Inspection of the International Space Station and other manmade objects in space is difficult because of the microgravity environment. Robots are a promising approach to accomplish these inspection tasks and later repairs, but must be able to maneuver across the surfaces. Because there is no gravity, the robot is at high risk of floating away, necessitating grippers that can adhere to the surface and resist the forces and torques of inspecting and moving on the structure.

Posted in: Briefs

Read More >>

Passive Mechanism for Maintaining Tension at a Spool to Within a Given Window

This innovation can be used with a vehicle, crane, winch, or boat, or for rock climbing, water skiing, and parasailing. NASA’s Jet Propulsion Laboratory, Pasadena, California During any winding or unwinding action, a tether may experience unexpected changes in tension. For example, the load being wound could become stuck and stop moving, causing the tension in the line to suddenly become extremely high. Alternatively, the load could slip, causing a lack of tension, or slack, in the line. Both of these scenarios can be harmful to neatly winding a spool in a tightly packed pattern. Excessive tension can cause one layer of line to become lodged in a layer below it and jammed. Too low of tension can cause the line on the spool to partially unravel and cause disorganized spooling. A novel mechanism utilizes the tension in the line and springs to hold a pulley between friction pads and a ratcheting mechanism to keep the tension at the spool within a particular window.

Posted in: Briefs, TSP

Read More >>

Aluminum Gas Tungsten Arc Orbital Tube Welding

Orbital tube butt welding could be performed on aluminum tubes. NASA’s Jet Propulsion Laboratory, Pasadena, California JPL has been hand-welding aluminum tubing for decades in support of flight programs and ground support equipment, including thermal plates and shrouds. This hand-welding process is time-consuming, cumbersome, difficult, and unreliable in terms of repeatability and success, which leads to leaks, rework, and cost increase. Socket-style meltdown welds are difficult to inspect via traditional nondestructive evaluation (NDE) methods (radiography) since by design, there is always an inherent highstress point in the joint.

Posted in: Briefs, TSP

Read More >>