Special Coverage

Active Aircraft Pylon Noise Control System
Unmanned Aerial Systems Traffic Management
Method of Bonding Dissimilar Materials
Sonar Inspection Robot System
Applying the Dynamic Inertia Measurement Method to Full-Scale Aerospace Vehicles
Method and Apparatus for Measuring Surface Air Pressure
Fully Premixed, Low-Emission, High-Pressure, Multi-Fuel Burner
Self-Healing Wire Insulation

Silicon Nanoantennas Turn Light Around

An artist’s rendering of nonlinear light scattering by a dimer of two silicon particles with a variable radiation pattern. A team of physicists from ITMO University, MIPT, and The University of Texas at Austin have developed an unconventional nanoantenna that scatters light in a particular direction depending on the intensity of incident radiation. The research findings will help with the development of flexible optical information processing in telecommunication systems.

Posted in: News, Lasers & Laser Systems, Optics, Photonics


Researchers Create First “Water-Wave” Laser

Artist’s impression of a water wave laser. Technion researchers have demonstrated, for the first time, that laser emissions can be created through the interaction of light and water waves. This “water-wave laser” could someday be used in tiny sensors that combine light waves, sound and water waves, or as a feature on microfluidic “lab-on-a-chip” devices used to study cell biology and to test new drug therapies. For now, the water-wave laser offers a “playground” for scientists studying the interaction of light and fluid at a scale smaller than the width of a human hair.

Posted in: News, Fiber Optics, Lasers & Laser Systems, Photonics


Scientists Find New Way to Image Solar Cells in 3-D

The Molecular Foundry’s Edward Barnard is part of a team of scientists that developed a new way to see inside solar cells. (Credit: Marilyn Chung) Next-generation solar cells made of super-thin films of semiconducting material hold promise because they’re relatively inexpensive and flexible enough to be applied just about anywhere. Researchers are working to dramatically increase the efficiency at which thin-film solar cells convert sunlight to electricity. But it’s a tough challenge, partly because a solar cell’s subsurface realm—where much of the energy-conversion action happens—is inaccessible to real-time, nondestructive imaging. It’s difficult to improve processes you can’t see.

Posted in: News, Imaging, Lasers & Laser Systems, Photonics


Securing Medical Devices in a Hostile World: Challenges and Ideas for Manufacturers

Around the world, medical devices are being deployed in increasingly unsecured environments, with hospitals being one of the largest.

Posted in: Webinars, On-Demand Webinars, Medical


Pedal Position Sensing in Heavy-Duty Vehicles

Pedal position detection is nothing new when it comes to operation of heavy duty equipment. However, the age old system operation of mechanical linkages between the pedal and the engine just might be coming to an end. New sensor technology is now enabling non-contact, drive-by-wire that can reduce total system cost while standing up to the harsh environments of off highway equipment.

Posted in: White Papers, Mechanical Components, Fluid Handling, Motion Control, Data Acquisition, Sensors


Evaluating the Chemistry of Brake Pads using SEM-EDS

Brake pads are a critical part of a vehicle’s overall braking system. With the broad diversity of available brake pad types, sub-types and unique chemistries there is an open question as to which brake pad provides the best overall performance.

Posted in: White Papers, Automotive, Manufacturing & Prototyping, Materials


Machine Positioning Uncertainty with Laser Interferometer Feedback

Laser interferometers are used as a measurement reference for machine correction and accuracy validation in the production of many high precision motion systems. Under controlled environmental conditions, laser interferometer measurement can provide low measurement uncertainty relative to the achievable accuracy of most commonly used motion control devices. As such, when processes require the utmost precision, laser interferometer measurement near the machine’s work point is frequently used as the feedback mechanism for machine control. In these instances, the use of laser interferometry to characterize the machine’s motion is unjustified because the measurement uncertainty of the metrology system is equivalent or higher than the motion error. The accuracy of these machines’ motion must be equated to an uncertainty in the feedback system’s measurement of the defined work point’s motion.

Posted in: White Papers, Mechanical Components, Mechanics


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.