Special Coverage

Distributed Propulsion Concepts and Superparamagnetic Energy Harvesting Hummingbird Engine
Aerofoam
Wet Active Chevron Nozzle for Controllable Jet Noise Reduction
Magnetic Relief Valve
Locking Mechanism for a Flexible Composite Hinge
Active Aircraft Pylon Noise Control System
Unmanned Aerial Systems Traffic Management
Method of Bonding Dissimilar Materials
Sonar Inspection Robot System
Home

Interface Between STAR-CCM+ and 42 for Enhanced Fuel Slosh Analysis

Fuel slosh is excited during spacecraft maneuvers. The forces and torques exerted on the spacecraft by the slosh must be controlled by the attitude control system to maintain correct pointing and spacecraft orbit. In some rare cases, the attitude control system may excite the slosh and cause a loss of control of the spacecraft, or the expected spacecraft motion from a certain control command will be different enough from the control command to adversely affect the mission. By linking the computational fluid dynamics (CFD) and the flight simulation software, the fuel slosh can be modeled at high fidelity by the CFD software, while receiving and passing information to and from the flight simulation software, thus increasing the fidelity of both models. In the past, fuel slosh has either been modeled with an equivalent mechanical model, such as a pendulum, or with a standalone CFD simulation.

Posted in: Briefs, Mechanical Components, Mechanics, Fluid Handling

Read More >>

Mechanisms for Achieving Non-Sinusoidal Waveforms on Stirling Engines

The current state-of-the-art Stirling engines use sinusoidal piston and displacer motion to drive the thermodynamic cycle and produce power. Research performed at NASA Glenn has shown that non-sinusoidal waveforms have the potential to increase Stirling engine power density, and could possibly be used to tailor engine performance to the needs of a specific application. However, the state-of-the-art Stirling engine design uses gas springs or planar springs that are very nearly linear, resulting in a system that resonates at a single frequency. This means that imposing non-sinusoidal waveforms, consisting of multiple frequencies, requires large forces from the drive mechanism (either the alternator or the crank shaft). These large forces increase losses, and increase the size and requirements of the control system. This innovation aims to reduce the external forcing requirements by introducing internal mechanical components that provide the forces necessary to achieve the desired waveforms.

Posted in: Briefs, Mechanical Components, Mechanics, Motion Control

Read More >>

RFID Cavity

Potential applications include inventory tracking for containers such as waste receptacles or storage containers.This technology provides a method for interrogating collections of items with radio-frequency identification (RFID) tags. It increases the read accuracy, meaning that more of the item tags will be successfully read. It also permits smaller tag antennas than would otherwise be necessary.

Posted in: Briefs, Mechanical Components, Mechanics, Fluid Handling

Read More >>

Method for Asteroid Volatile Extraction in Space

The method would support human missions to Mars or other distant objects.Some meteorites representative of certain classes of asteroids are 25% or more water by weight. This is consistent with infrared spectra of some asteroids, indicating hydrated minerals are abundant in some varieties of carbonaceous chondrite asteroids. Since water is very valuable in space, it would be desirable to be able to process asteroids to recover this water and other volatiles. The Asteroid Redirect Mission concept has formulated a method for returning asteroids of 1,000-ton mass into the Earth-Moon system orbit using only ~10 tons of propellant. If ~25% of that returned asteroid mass were recovered as volatiles and solar power used to make those volatiles into propellant, then the overall system would generate approximately 25 times as much propellant as it uses. This could be used to make sustainable human missions to Mars or otherwise spread humanity into the solar system.

Posted in: Briefs, Aerospace, Mechanical Components, Mechanics, Fluid Handling

Read More >>

Improving Stirling Engine Performance Through Optimized Piston and Displacer Motion

Stirling engines typically achieve high efficiency, but lack power density. Low power density prevents them from being used in many applications where internal combustion engines are viable competitors, and increases system costs in applications that require Stirling engines. This limits their operating envelope in both terrestrial and space applications. Sinusoidal piston and displacer motion is one of the causes of low power density. Previous work proposed solving this problem by replacing sinusoidal waveforms with waveforms that more closely approximate those of the ideal Stirling cycle. However, when working with real engines, imposing ideal waveforms has been shown to reduce power density and efficiency due to increased pressure drop through the regenerator and heat exchangers.

Posted in: Briefs, Mechanical Components, Mechanics, Fluid Handling, Motors & Drives

Read More >>

Biomarker Sensor System and Method for Multi-Color Imaging and Processing of Single-Molecule Life Signatures

NASA’s Jet Propulsion Laboratory offers a method to manufacture biomarker sensor arrays with nanoscale resolution and active regions on the order of 1 micron by applying nanolithographic direct-write techniques to the fabrication of Silane chemistry sensors on a transparent substrate. This novel technology enables extremely fine patterns of detectors suitable for multicolor imaging of single-molecule samples at resolutions far below the diffraction limit. The extremely small size of these sensors allows for rapid, highly specific screening for hundreds of functionalities within a single, small, integrated microfluidics chip.

Posted in: Briefs, White Papers, Sensors

Read More >>

Device and Method of Scintillating Quantum Dots for Radiation Imaging

Potential applications include medical imaging and aircraft inspection.NASA’s Langley Re search Center has developed Scintillating Quantum Dots for Imaging X-rays (SQDIX) technology that enables the creation of x-ray detectors that are more sensitive than current x-ray detectors. In addition to superior sensitivity, SQDIX also offers the promise of reducing the cost of x-ray detectors by at least a factor of 10. Simply stated, SQDIX has the potential to change the way that x-ray detection is done.

Posted in: Briefs, Imaging, Sensors

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.