Special Coverage

Home

E-Textile Interconnect

Devices constructed from e-textiles have applications in law enforcement, by first-responders, and in wireless communications and computing. Lyndon B. Johnson Space Center, Houston, Texas E-textiles have shown great promise within the microwave and antenna community to provide a low-mass, highly conformal option that integrates extremely well with fabric-based microwave devices and antenna platforms, but often not as well with more conventional devices.

Posted in: Briefs, TSP, Antennas

Read More >>

Pumped Subsea Energy Storage

This technique would be applicable to offshore oil platforms and energy storage for public utilities. NASA’s Jet Propulsion Laboratory, Pasadena, California A local energy source is desired for near-shore and offshore applications. Gas generators, diesel generators, and long-length submerged power cables tend to be expensive. A proposed solution is to use offshore wind with some type of energy storage mechanism for up to 1 GW-h. Energy storage in batteries is too expensive and massive, and subsea compressed air energy storage (CAES) has not been proven for very deep depths. Furthermore, CAES involves very great temperature changes that result in large inefficiencies.

Posted in: Briefs, TSP, Energy Efficiency, Energy Storage, Solar Power, Wind Power

Read More >>

Hands-Free Control Interfaces for an Extravehicular Jetpack

This hands-free approach could be applicable to other robotic interfaces requiring six-DOF control inputs. Lyndon B. Johnson Space Center, Houston, Texas To enable the human mobility necessary to effectively explore near-Earth asteroids and deep space effectively, a new extravehicular activity (EVA) jetpack is under development. The new design leverages knowledge and experience gained from the current astronaut rescue device, the Simplified Aid for EVA Rescue (SAFER). Whereas the primary goal for a rescue device is to return the crew to a safe haven, in-space exploration and navigation requires an expanded set of capabilities. To accommodate the range of tasks astronauts may be expected to perform while utilizing the jetpack, it was desired to research a hands-free method of control. This hands-free control method would enable astronauts to command their motion while transporting payloads and conducting two-handed tasks.

Posted in: Briefs, TSP, Machinery & Automation, Robotics, Sensors

Read More >>

Design for Improving the Flatness of Solar Sails

An optically flat solar sail could be useful in optical communication and solar energy applications. NASA’s Jet Propulsion Laboratory, Pasadena, California This work describes a discontinuous or segmented mirror whose overall flatness is less dependent on the limited tension that can be supplied by the booms. A solar sail is a large, nominally flat sheet of extremely thin reflectorized film rigidly attached to a spacecraft, enabling propulsion via solar radiation pressure. Rip-stop fibers embedded in the backside of the film — with diameters ≈100× the thickness of the film — are commonly used to arrest tear propagation, which can easily occur in the handling and/or deployment of these gossamer-thin structures. Typically, the thin film or membrane that is the sail is systematically folded to enable both volumetrically compact transportation to space and mechanized deployment. It is the aggressive folding and creasing of the thin film that limits the ultimate flatness that can be achieved.

Posted in: Briefs, TSP, Solar Power

Read More >>

Reactionless Drive Tube Sampling Device and Deployment Method

Springs and a counter-mass create a powerful and stable sampling device. NASA’s Jet Propulsion Laboratory, Pasadena, California A sampling device and a deployment method were developed that allow collection of a predefined sample volume from up to a predefined depth, precise sampling site selection, and low impact on the deploying spacecraft. This device is accelerated toward the sampled body, penetrates the surface, closes a door mechanism to retain the sample, and ejects a sampling tube with the sample inside. At the same time the drive tube is accelerated, a sacrificial reaction mass can be accelerated in the opposite direction and released in space to minimize the momentum impact on the spacecraft. The energy required to accelerate both objects is sourced locally, and can be a spring, cold gas, electric, or pyrotechnic. After the sample tube is ejected or extracted from the drive tube, it can be presented for analysis or placed in a sample return capsule.

Posted in: Briefs, TSP, Motors & Drives

Read More >>

Rotary-Hammer Core Sample Acquisition Tool

This tool can be used for drilling in construction, mining, or scientific research applications. NASA’s Jet Propulsion Laboratory, Pasadena, California NASA is developing technologies to enable in situ analysis and sample acquisition from planetary bodies. Missions to these diverse locations require autonomous, highly customizable, reliable tools. A tool capable of core generation, capture, and transfer, and customizable for different missions, would be very valuable.

Posted in: Briefs, TSP

Read More >>

Open-Source, Platform-Neutral BLAS Library

This work seeks to create libraries that are truly cross-platform, and support hardware from different manufacturers of different generations. Goddard Space Flight Center, Greenbelt, Maryland New hybrid computing systems consist of a multicore CPU (central processing unit) and one or more massively parallel accelerator devices, such as GPUs (graphics processing units). Effectively utilizing these systems involves using all of the available computational resources, which may be difficult to program. Computing libraries have long existed to alleviate programmer burden and to provide high-performing and tested implementations for common tasks. Unfortunately, the library space is very fragmented, even in cases where the libraries cover similar functionality. In the accelerated computing space, this is compounded by different libraries and manufacturer-specific products that are used, all of which are incompatible with one another. The work described here seeks to overcome much of this burden, by creating libraries that are truly cross-platform, supporting hardware from different manufacturers, of different generations, and of differing levels of parallelism.

Posted in: Briefs, TSP, Electronics & Computers

Read More >>

White Papers

Differential Nonlinearity in Analog Measurements
Sponsored by sealevel
Reliability Testing of GORE® Protective Vents in LED Luminaires
Sponsored by Gore
Data Acquisition and I/O Control Applications Handbook
Sponsored by United Electronic Industries
Maintenance Free Linear Guides
Sponsored by IKO
Back to Basics of Electrical Measurement
Sponsored by Keithley
Bridging the Armament Test Gap
Sponsored by Marvin Test Solutions

White Papers Sponsored By: