Special Coverage

Self-Healing Wire Insulation
Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response
Space Optical Communications Using Laser Beams
High Field Superconducting Magnets
Active Response Gravity Offload and Method
Strat-X
Sonar Inspection Robot System
Home

Compact Vibration Damper

Do you have a need to reduce vibration in high performance structures? Then, you’ll want to attend this NASA Tech Briefs Webinar!NASA Langley Research Center has developed a compact tuned damper that reduces vibration occurring at a fixed frequency. Structural vibrations frequently need to be damped to prevent damage to a structure. Tuned dampers reduce vibration of the base structure by the dissipation of energy. The magnitude of the dissipated energy is proportional to the square of the displacement or velocity of the tuned mass, which in turn is proportional to the range of motion.

Posted in: On-Demand Webinars

Read More >>

Real-Time Radiation Monitoring Using Nanotechnology

NASA has patented a unique chemical sensor array leveraging nano-structures for monitoring the concentration of chemical species or gas molecules that is not damaged when exposed to protons and other high-energy particles over time. The nanotechnology-enabled chemical sensor array uses single walled carbon nanotubes (SWCNTs), metal catalyst-doped SWCNTs, and polymer-coated SWCNTs as the sensing media between a pair of interdigitated electrodes (IDE). By measuring the conductivity change of the SWCNT device, the concentration of the chemical species or gas molecules can be measured. These sensors have high sensitivity, low power requirements, and are robust and have a low manufacturing cost compared to other commercial chemical sensors for detection of trace amount of chemicals in gasses and liquids.

Posted in: Briefs, Sensors

Read More >>

Flexible Thin Metal Film Thermal Sensing System

NASA’s Langley Research Center has extensively studied self-metallized polyimide films for aerospace applications. These thin films have shown promise not only as reflective coatings, but also conductive coatings. NASA believes that its technology may offer advantages to sensor companies, especially thermocouples as the conductive films show a volume resistivity approaching the pure metal. Specifically, NASA offers a process for producing metallized polymer films with thick conductive metal coatings.

Posted in: Briefs, Sensors

Read More >>

Integrated Temperature and Capacitive Ablation Recession Rate Sensors

Innovators at NASA’s Glenn Research Center have developed new sensors that can be integrated into thermal protection systems (TPS) to protect them from environmental damage. Radiation, shock, and ablation (erosion of the protective outer surface) combine to damage the TPS material, so it becomes crucial to determine the temperature and rate at which the TPS material deteriorates. Glenn has developed an improved method to bulk-manufacture silicon carbide (SiC) devices that enables sensors to be manufactured economically. Additionally, this technique permits the simultaneous production of SiC sensors of different types (e.g., pressure sensors, flow sensors, and accelerometers) from the same SiC wafer. Glenn’s development holds great potential for any industry that requires sensors and monitoring of temperature, corrosion, or environmental damage.

Posted in: Briefs, Sensors

Read More >>

Coming Soon - Utilizing the Attributes of Aluminum Extrusion for Effective Automotive Solutions

In Conjunction with SAE Aluminum and the aluminum extrusion process offer product engineers a host of unique attributes. Whether it is the process’ capability of near-net shapes with high precision, the material’s combination of strength with light weight, or its high thermal conductivity, effectively employing extrusion-based components can yield cost-effective lightweighting solutions.

Posted in: Upcoming Webinars

Read More >>

Coming Soon - Adhesives and Sealants for Automotive Weight Reduction, Safety, and Performance

In Conjunction with SAE Fuel economy regulations are challenging vehicle manufacturers to increase fuel efficiency dramatically. At the same time, OEMs must produce vehicles that satisfy consumer demand for safety, performance, and comfort. New combinations of materials, such as high-strength steels, light metals, and composites, are emerging as OEMs seek to satisfy these conflicting needs.

Posted in: Upcoming Webinars

Read More >>

Simulating Composite Structures

Layered composites are often the materials of choice when a manufacturer must reduce the weight (lightweight) of a component or system to increase fuel efficiency while maintaining strength. Composites are often used in automobiles, aircraft, ships and wind turbines for this purpose. But because their strength and performance depend upon the thickness, layer structure, orientation and other factors, determining how composite structures will perform in real-world conditions is not as easy as it is for metallic components of the same shape. Read this white paper to learn how you can use ANSYS Composite PrepPost to perform layup simulations to optimize composites for strength, durability and light weight.

Posted in: White Papers, Manufacturing & Prototyping, Composites, Materials

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.