Special Coverage

Home

Neutron Spectrometer for Inner Radiation Belt Studies

The instrument is inherently robust, cost-effective, compact, and modular. Goddard Space Flight Center, Greenbelt, Maryland The Earth’s magnetosphere offers a wealth of information on particle dynamics, acceleration, and trapping. Fast neutrons, produced in the Earth’s atmosphere by the impact of galactic cosmic rays (GCRs) and solar energetic particles (SEPs), are an important but poorly measured component of the radiation environment in the inner magnetosphere. Cosmic ray albedo neutron decay (CRAND), whereby atmospheric neutrons beta-decay into protons and electrons, is a significant source of energetic protons in the inner radiation belt. Current models of the inner proton belt rely heavily on Monte Carlo simulations for the CRAND component, validated primarily by a handful of single-point balloon measurements from the 1970s.

Posted in: Briefs, TSP

Read More >>

High-Energy Instrumentation for Small Satellite Platforms

A key asset of the instrument design is the ability to measure a broad range of radiation. Goddard Space Flight Center, Greenbelt, Maryland Given the increased availability of small satellite opportunities either through CubeSats or the Air Force’s University Nanosat program, and the limited availability of larger platforms, it is challenging to develop new instrumentation that not only fits within the envelope of small satellites, but also addresses the diverse science applications available in low Earth orbit (LEO). While small-platform instrumentation is limited in sensitivity, the ability to populate LEO with a fleet of instruments opens new science objectives not available with larger standalone payloads. Furthermore, coordinated observations of a variety of radiation species that either enter LEO from the Sun or heliosphere directly, or that reside within the radiation belts themselves, are necessary to fully reach closure on complex processes that govern particle acceleration and transport.

Posted in: Briefs

Read More >>

Variable Acceleration Force Calibration System

Langley Research Center, Hampton, Virginia A variable acceleration calibration system combines an innovative mechanical system and a statistical design of experiments to calibrate multi-axis force transducers. This system can reduce calibration time, allow for improved calibration of large-scale transducers, provide mobility for on-site calibrations, allow multiple transducers to be calibrated simultaneously, and accommodate dynamic force calibration.

Posted in: Briefs, TSP

Read More >>

A Synthetic Quadrature Phase Detector/ Demodulator for Fourier Transform Spectrometers

This method makes it possible to use simple, low-cost, high-resolution audio digitizers. Langley Research Center, Hampton, Virginia Fourier transform spectroscopy works by measuring a spectral/light signal through a Michelson interferometer. In order to know the wavelength of the signal, one must use a stable reference, which is typically a metrology laser. In a standard Fourier transform spectrometer (FTS) system, the laser signal also runs through the interferometer and the laser beam is guided to a separate detector that is then used to trigger an analog-to-digital converter, which then captures the spectral signal.

Posted in: Briefs, TSP

Read More >>

Device for Direct Measurement of the Diffusivity and Molecular Release Through Membranes and Filters

Controlled-release systems for drug delivery, molecular sieving, and single-molecule detection use micro and nano structures. Lyndon B. Johnson Space Center, Houston, Texas Concentration-driven molecular diffusion is a fundamental phenomenon essential for the transport of nutrients in cells, for oxygen exchange in the lungs, and mating of chemicals in industrial reactors and the food industry. Thus, diffusion plays a key role in a variety of disciplines. The concentration-driven diffusive transport is commonly described by Fick’s laws of diffusion. It is most often approximated by the Stokes-Einstein equation, which assumes a rigid solute sphere diffusing in a continuum of solvent at a low Reynolds number and infinite dilution.

Posted in: Briefs

Read More >>

Increased Alignment in Carbon Nanotube Growth

Ames Research Center, Moffett Field, California The combination of electronic and mechanical properties of carbon nanotubes (CNTs) has led to wide-ranging investigation of their potential in future electronics and computing, sensors, electrodes, and composites. A method and system for fabricating an array of two or more CNT structures on a coated substrate surface was developed.

Posted in: Briefs

Read More >>

Process to Fabricate Specific Sized Monodisperse Polystyrene Microparticles

Langley Research Center, Hampton, Virginia A new method was developed to prepare monodisperse nano to microparticles of polystyrene ranging from 0.5 to 2.5 microns in relatively large-quantity batches (2 L, 10% by weight in water). Current commercial sources are very expensive and can typically only be acquired on a relatively small scale. Monodisperse polystyrene in this size range is an important component of laser velocimetry measurements in wind tunnels, but has many other potential uses. Polystyrene microparticles have uses in paints/coatings, adhesives, bio/immunoassays, reaction catalysts, and chromatography materials. The main benefits of this technology are low cost, scalability, and selectable size.

Posted in: Briefs, TSP

Read More >>