News

NASA Engineer Set to Complete First 3D-Printed Space Cameras

By the end of September, NASA aerospace engineer Jason Budinoff is expected to complete the first imaging telescopes ever assembled almost exclusively from 3D-manufactured components.Under his multi-pronged project, funded by Goddard’s Internal Research and Development (IRAD) program, Budinoff is building a fully functional, 50-millimeter (2-inch) camera whose outer tube, baffles and optical mounts are all printed as a single structure. The instrument is appropriately sized for a CubeSat, a tiny satellite comprised of individual units each about four inches on a side. The instrument will be equipped with conventionally fabricated mirrors and glass lenses and will undergo vibration and thermal-vacuum testing next year.Budinoff also is assembling a 350-millimeter (14-inch) dual-channel telescope whose size is more representative of a typical space telescope.Should he prove the approach, Budinoff said NASA scientists would benefit enormously — particularly those interested in building infrared-sensing instruments, which typically operate at super-cold temperatures to gather the infrared light that can be easily overwhelmed by instrument-generated heat. Often, these instruments are made of different materials. However, if all the instrument’s components, including the mirrors, were made of aluminum, then many of the separate parts could be 3D printed as single structures, reducing the parts count and material mismatch. This would decrease the number of interfaces and increase the instrument’s stability.SourceAlso: Learn about an Image Processing Method To Determine Dust Optical Density.

Posted in: Cameras, Imaging, Photonics, Optics, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Aerospace, RF & Microwave Electronics, News

Read More >>

Researchers Extract Audio from Visual Information

Researchers at MIT, Microsoft, and Adobe have developed an algorithm that can reconstruct an audio signal by analyzing minute vibrations of objects depicted in video. In one set of experiments, the team was able to recover intelligible speech from the vibrations of a potato-chip bag photographed from 15 feet away through soundproof glass."When sound hits an object, it causes the object to vibrate,” says Abe Davis, a graduate student in electrical engineering and computer science at MIT and first author on the new paper. “The motion of this vibration creates a very subtle visual signal that’s usually invisible to the naked eye. People didn’t realize that this information was there.”Reconstructing audio from video requires that the frequency of the video samples — the number of frames of video captured per second — be higher than the frequency of the audio signal. In some of their experiments, the researchers used a high-speed camera that captured 2,000 to 6,000 frames per second. The researchers’ technique has obvious applications in law enforcement and forensics, but Davis is more enthusiastic about the possibility of what he describes as a “new kind of imaging.”“We’re recovering sounds from objects,” he says. “That gives us a lot of information about the sound that’s going on around the object, but it also gives us a lot of information about the object itself, because different objects are going to respond to sound in different ways.” In ongoing work, the researchers have begun trying to determine material and structural properties of objects from their visible response to short bursts of sound. Source Also: Learn about Enhanced Auditory Alert Systems.

Posted in: Electronics & Computers, Cameras, Video, Imaging, Software, News

Read More >>

NASA Begins Engine Test of Space Launch System Rocket

Engineers are preparing to test parts of NASA's Space Launch System (SLS) rocket that will send humans to space. They installed an RS-25 engine on the A-1 Test Stand at Stennis Space Center. The Stennis team will perform developmental and flight certification testing of the RS-25 engine, a modified version of the space shuttle main engine. The SLS's core stage will be powered by a configuration of four RS-25 engines.

Posted in: Motion Control, Motors & Drives, Power Transmission, Test & Measurement, Aerospace, Aviation, News

Read More >>

Airbags Take the Weight in Load Tests of Aircraft

NASA Armstrong Flight Research Center’s Flight Loads Laboratory completed structural evaluations on a modified Gulfstream G-III aircraft that will serve as a test bed for the Adaptive Compliant Trailing Edge (ACTE) project. The loads tests assisted engineers in predicting the levels of structural stress the airplane will likely experience during ACTE research flights. And for the first time, some unusual hardware aided the process: the aircraft was supported by three large inflatable airbags during the tests.

Posted in: Mechanical Components, Test & Measurement, Aerospace, Aviation, News

Read More >>

Students Learn On-the-Fly Engineering in Solar Car Competition

Nine teams of solar powered model cars competed during the inaugural Junior Solar Sprint (JSS) competition held at the STEM Education and Outreach Center at Aberdeen Proving Ground, MD. The JSS is a nationwide competition funded by the Army Educational Outreach Program, which challenges teams of students from elementary and middle school to design, construct, and race small model cars powered entirely by solar energy.

Posted in: Motion Control, Motors & Drives, Solar Power, Renewable Energy, Energy, News, Automotive

Read More >>

Cassini Spacecraft Reveals Geysers and More on Saturn Moon

Scientists using mission data from NASA’s Cassini spacecraft have identified 101 distinct geysers erupting on Saturn’s icy moon Enceladus. Their analysis suggests it is possible for liquid water to reach from the moon’s underground sea all the way to its surface.

Posted in: Imaging, Aerospace, News

Read More >>

Acoustic Bottle Bends Paths of Sound Waves

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a technique for generating acoustic bottles in open air that can bend the paths of sound waves along prescribed convex trajectories.The acoustic “bottle” features a three-dimensional curved shell, in which a wall of high acoustic pressure surrounds a null pressure region in the middle. Sound waves forming the bottle are concentrated into a beam that travels through the high pressure wall of its curved shell. The sound waves are generated by an array of loud speakers, 1.5 centimeters in diameter and spaces 2.5 centimeters apart, operating at a frequency of 10 kilo Hertz (kHz) and can be launched along a designated trajectory by precisely adjusting the phase profile of the speaker array.Because the high pressure wall of the acoustic bottle exerts a pulling force, there are no sound waves passing through the null pressure interior of the bottle and the bottle can be used for acoustic trapping."Our acoustic bottle beams open new avenues to applications in which there is a need to access hard-to-reach objects hidden behind obstacles, such as acoustic imaging and therapeutic ultrasound through inhomogeneous media,” said team member Tongcang Li. “We can also use an acoustic bottle as a cloaking device, re-routing sound waves around an object and then recovering them in their original form, making the object invisible to sonar detection.”Acoustic bottle beams might also serve another application: acoustic levitation, in which sound waves are used to lift and manipulate millimeter-sized objects, including particles, microorganisms and droplets of water.SourceAlso: Learn about a High-Temperature Surface-Acoustic-Wave Transducer.

Posted in: Imaging, News

Read More >>