News

Technique Enables Imaging of Transparent Organisms

Researchers at the RIKEN Quantitative Biology Center in Japan and the University of Tokyo have developed a method that combines tissue decolorization and light-sheet fluorescent microscopy to take extremely detailed images of the interior of individual organs and even entire organisms. The work allows scientists to make tissues and whole organisms transparent, and then image them at extremely precise, single-cell resolution. The method, called CUBIC (Clear, Unobstructed Brain Imaging Cocktails and Computational Analysis), was used to take images of mouse brains, hearts, lungs, kidneys, and livers, and then was attempted on infant and adult mice. In all cases, they could get clear tissues. The method could be used to study how embryos develop or how cancer and autoimmune diseases develop at the cellular level, leading to a deeper understanding of such diseases and perhaps to new therapeutic strategies. The group plans to allow for the rapid imaging of whole bodies of adult mice or larger samples such as human brains, and to apply this technology to further our understanding of autoimmune and psychiatric diseases. Source:

Posted in: Imaging, News

Read More >>

Researchers Develop a Way to Control Material with Voltage

A new way of switching the magnetic properties of a material using just a small applied voltage, developed by researchers at MIT and collaborators elsewhere, could signal the beginning of a new family of materials with a variety of switchable properties. The technique could ultimately be used to control properties other than magnetism, including reflectivity or thermal conductivity. The first application of the new finding is likely to be a new kind of memory chip that requires no power to maintain data once it’s written, drastically lowering its overall power needs. This could be especially useful for mobile devices, where battery life is often a major limitation.

Posted in: Batteries, Electronics & Computers, Electronic Components, Board-Level Electronics, Power Management, Materials, Metals, Semiconductors & ICs, News

Read More >>

Garnet Ceramics Could Be the Key to High-Energy Lithium Batteries

Scientists at the Department of Energy’s Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs. The ORNL-led team used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Posted in: Batteries, Electronics & Computers, Electronic Components, Power Management, Materials, Ceramics, Energy Efficiency, Energy, Semiconductors & ICs, News

Read More >>

Ultrasound Creates 3D Haptic Shapes

Touch feedback, known as haptics, has been used in entertainment, rehabilitation, and even surgical training. University of Bristol researchers, using ultrasound, have developed an invisible 3D haptic shape that can be seen and felt.Led by Dr Ben Long and colleagues Professor Sriram Subramanian, Sue Ann Seah, and Tom Carter from the University of Bristol’s Department of Computer Science, the research could change the way 3D shapes are used.  The new technology could enable surgeons to explore a CT scan by enabling them to feel a disease, such as a tumor, using haptic feedback.By focusing complex patterns of ultrasound, the air disturbances can be seen as floating 3D shapes. Visually, the researchers have demonstrated the ultrasound patterns by directing the device at a thin layer of oil so that the depressions in the surface can be seen as spots when lit by a lamp.The system generates an invisible three-dimensional shape that can be added to 3D displays to create an image that can be seen and felt. The research team have also shown that users can match a picture of a 3D shape to the shape created by the system. SourceAlso: Learn about an Ophthalmic Ultrasound System for Ocular Structures.

Posted in: Electronics & Computers, Imaging, Medical, News

Read More >>

Rosetta Begins Science on Comet

After more than a decade traveling through space, a robotic lander built by the European Space Agency has made the first-ever soft landing of a spacecraft on a comet. Mission controllers at ESA's mission operations center in Germany received a signal confirming that the Philae lander had touched down on comet 67P/Churyumov-Gerasimenko on November 12.

Posted in: Aerospace, Machinery & Automation, Robotics, News

Read More >>

Imaging Technique Could Detect Acoustically “Invisible” Cracks

It has long been understood that acoustic nonlinearity is sensitive to many physical properties including material microstructure and mechanical damage. The lack of effective imaging has, however, held back the use of this important method. Currently, engineers are able to produce images of the interior of components using ultrasound, but can only detect large problems such as cracks.

Posted in: Imaging, Test & Measurement, News

Read More >>

Webb Telescope’s Heart Survives Deep-Freeze Test

After 116 days of being subjected to extremely frigid temperatures like those in space, the heart of the James Webb Space Telescope, the Integrated Science Instrument Module (ISIM) and its sensitive instruments, emerged unscathed from the thermal vacuum chamber at NASA’s Goddard Space Flight Center.

Posted in: Test & Measurement, Measuring Instruments, Monitoring, Aerospace, RF & Microwave Electronics, News

Read More >>