News

Harness-Mounted Computer Improves Communication Between Dogs and Humans

North Carolina State University researchers have developed a suite of technologies that can be used to enhance communication between dogs and humans. The communication tool enables applications in search-and-rescue operations and pet training. “We’ve developed a platform for computer-mediated communication between humans and dogs that opens the door to new avenues for interpreting dogs’ behavioral signals and sending them clear and unambiguous cues in return,” says Dr. David Roberts, an assistant professor of computer science at NC State and co-lead author of a paper on the work. “We have a fully functional prototype, but we’ll be refining the design as we explore more and more applications for the platform.”The platform itself is a harness that fits comfortably onto the dog, and which is equipped with a variety of technologies.“Dogs communicate primarily through body language, and one of our challenges was to develop sensors that tell us about their behavior by observing their posture remotely,” Roberts says. “So we can determine when they’re sitting, standing, running, etc., even when they’re out of sight." A harness-mounted computer transmits data wirelessly. The technology also includes physiological sensors that monitor things like heart rate and body temperature. The sensors not only track a dog’s physical well-being, but can offer information on a dog’s emotional state, such as whether it is excited or stressed.SourceAlso: Learn about a Communication Monitoring System for Enhanced Situational Awareness.

Posted in: Electronics & Computers, Sensors, Test & Measurement, Monitoring, Communications, Wireless, News

Read More >>

Thirsty? There’s an App for That

Clean, potable water is one thing the world universally cannot live without. It hydrates. It cleans. It keeps us alive and well. That makes water very valuable to soldiers. However, as many mission planners know, water planning can be a nightmare. Too much water can strain already heavy combat loads, perhaps forcing some soldiers to pack too little in favor of a lighter pack. When soldiers don't have enough water, dehydration could set in, decreasing performance and increasing the risk of serious heat illnesses. To help solve this logistical problem, researchers from the U.S. Army Research Institute of Environmental Medicine’s (USARIEM) Thermal and Mountain Medicine Division and Massachusetts Institute of Technology’s Lincoln Laboratory worked to develop an app that will help unit leaders accurately predict water needs with the goal of minimizing the burden of water transport and sustaining hydration. The app is designed to satisfy the military’s desire for paperless guidance that is simple, accurate, mission-specific and available in real time.

Posted in: Electronics & Computers, PCs/Portable Computers, Software, Defense, News

Read More >>

University Opens New Ballistics and Impact Dynamics Lab

Wichita State University’s National Institute for Aviation Research recently opened a new ballistics and impact dynamics research lab in the former Britt Brown Arena at the Kansas Coliseum. The new ballistics lab, part of NIAR’s environmental Test Labs, uses a custom built ballistic firing device to propel 22-50 caliber rounds into components inside a concrete containment building. The test is designed to simulate the impact of a structural failure on the aircraft.

Posted in: Cameras, Imaging, Test & Measurement, Monitoring, Aerospace, Aviation, Data Acquisition, Defense, News

Read More >>

2-in-1 Motor Increases Range of Electric Cars

Scientists from Nanyang Technological University (NTU) and German Aerospace Centre (DLR) have invented a 2-in-1 electric motor that increases the range of electric vehicles. The engine integrates the traditional electric motor with the air-conditioning compressor, typically two separate units. This novel, space-saving design allows the use of bigger batteries, which can increase the range of electric vehicles by an additional 15 to 20 percent.

Posted in: Manufacturing & Prototyping, Motion Control, Motors & Drives, Energy Efficiency, Energy, Transportation, Automotive, News

Read More >>

Pulley Mechanism Improves Hand Function After Surgery

Engineers at Oregon State University have developed and successfully demonstrated a simple pulley mechanism to improve hand function after surgery. The device is one of the first instruments ever created that could improve the transmission of mechanical forces and movement while implanted inside the body.

Posted in: Mechanical Components, Motion Control, Rehabilitation & Physical Therapy, Medical, News

Read More >>

NASA Team Proposes Laser for Orbital Debris Tracking

Barry Coyle and Paul Stysley, laser researchers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, want to develop a method to define and track orbital debris using laser ranging — a promising approach that could overcome shortfalls with passive optical and radar techniques, which debris trackers use today to locate and track dead satellites, spacecraft components, and other remnants orbiting in low-Earth or geosynchronous orbits where most space assets reside.Inspired by an Australian study that found laser tracking increased the accuracy of debris ranging by a factor of 10 when compared with other methods, Coyle and Stysley now "want to reproduce the results from this paper on a larger scale," using Goddard’s Geophysical and Astronomical Observatory (GGAO). The GGAO satellite laser-ranging team, led by Goddard’s Jan McGarry, has advanced laser-ranging techniques using satellites equipped with retro-reflectors, becoming world leaders in the field.GGAO’s 48-inch telescope, which transmits outgoing and receives incoming laser beams, was built in the early 1970s as a research and development and testing facility for laser ranging, lidar, and astronomical instruments. The facility has ranged to spacecraft at planetary distances and has been used to provide on-orbit calibration of some of Goddard’s altimetry spacecraft. NASA also used the facility in 2005 to determine the performance of the laser-altimeter instrument aboard its MESSENGER spacecraft as it flew past Earth during its sojourn to Mercury.Once the team demonstrates ranging with a target not equipped with the retro-reflector, it would like to implement the technique in a global network of ground-based laser observatories to observe and more accurately track debris, thus aiding the world’s current debris-tracking efforts.Although it’s difficult removing the material itself, NASA mission operators can minimize its impact on operational space assets. They can move non-operational spacecraft to less populated orbits to remove the threat to new missions or allow dead craft to re-enter the atmosphere, where they burn up upon entry. What’s essential is that these assets are tracked and monitored to protect active and future missions from potentially harmful collisions, Coyle said.SourceAlso: Learn about a Debris & Ice Mapping Analysis Tool.

Posted in: Photonics, Lasers & Laser Systems, Aerospace, RF & Microwave Electronics, News

Read More >>

New System Could Prolong Power in Mobile Devices

Researchers from The University of Texas at Dallas have created technology that could be the first step toward wearable computers with self-contained power sources or, more immediately, a smartphone that doesn’t die after a few hours of heavy use. The technology taps into the power of a single electron to control energy consumption inside transistors, which are at the core of most modern electronic systems.

Posted in: Electronics & Computers, Electronic Components, Power Management, PCs/Portable Computers, Semiconductors & ICs, News

Read More >>