News

New Solder for Semiconductors Creates Manufacturing Possibilities

A research team led by the University of Chicago has demonstrated how semiconductors can be soldered and still deliver good electronic performance. The team developed compounds of cadmium, lead, and bismuth that can be applied as a liquid or paste to join two pieces of a semiconductor by heating them to several hundred degrees Celsius, which is mild by industry standards. The paste or our liquid converts cleanly into a material that will be compositionally matched to the bonded parts, and that required development of new chemistry. Special molecules were designed that fulfill this requirement so they do not contaminate the material. After application as a liquid or paste, they decompose to form a seamless joint. The technology could enable 3D printing of semiconductors, and could lead to the development of less expensive, solution-processed semiconductors needed for entry into new markets. Among these markets are printable electronics, 3D printing, flat-panel display manufacturing, solar cells, and thermoelectric heat-to-electricity generators for the Internet of Things. Source:

Posted in: News

Read More >>

Compact 3D Printer-Scanner is All-In-One Part Maker

Nanyang Technological University’s (NTU) start-up Blacksmith Group launched a compact 3D printer that can also scan items into digitized models. Named the Blacksmith Genesis, this user-friendly device allows users without much knowledge of 3D software to scan any item, then edit the digitized model on the computer, and print it out in 3D.  Housed in a black aluminum casing, the device features a 2-inch LCD display, Wi-Fi, an integrated SD-card reader, and a USB connection for instant printing. Blacksmith Genesis uses an innovative rotary platform for its printing and scanning, unlike other commercial 3D printers. The revolving platform allows for true 360-degrees scanning. Blacksmith Genesis is also the first to feature remote live monitoring and automatic error detection, thanks to its in-built camera. This allows users to monitor and control the printing process on their smartphone from anywhere in the world through the Internet. Source:

Posted in: News

Read More >>

New Method Generates High-Resolution, Moving Holograms in 3D

The 3D effect produced by stereoscopic glasses used to watch movies cannot provide perfect depth cues. Furthermore, it is not possible to move one’s head and observe that objects appear different from different angles — a real-life effect known as motion parallax. Researchers have developed a new way of generating high-resolution, full-color, 3D videos that uses holographic technology. Holograms are considered to be truly 3D, because they allow the viewer to see different perspectives of a reconstructed 3D object from different angles and locations. Holograms are created using lasers, which can produce the complex light interference patterns, including spatial data, required to re-create a complete 3D object. To enhance the resolution of holographic videos, researchers used an array of spatial light modulators (SLMs). SLMs are used to display hologram pixels and create 3D objects by light diffraction. Each SLM can display up to 1.89 billion hologram pixels every second. Source:

Posted in: News, Video

Read More >>

New Technique “Despeckles” Views of Saturn’s Moon

During 10 years of discovery, NASA's Cassini spacecraft has pulled back the smoggy veil that obscures the surface of Titan, Saturn's largest moon. Thanks to a recently developed technique for handling noise in Cassini's radar images, these views now have a whole new look. The technique, referred to by its developers as "despeckling," produces images of Titan's surface that are much clearer and easier to look at. Typically, Cassini's radar images have a characteristic grainy appearance. This "speckle noise" can make it difficult for scientists to interpret small-scale features or identify changes in images of the same area taken at different times. Despeckling uses an algorithm to modify the noise, resulting in clearer views that can be easier for researchers to interpret. Despeckling Cassini's radar images has a variety of scientific benefits, including the ability to produce 3D maps, called digital elevation maps, of Titan's surface with greatly improved quality. With clearer views of river channels, lake shorelines, and windswept dunes, researchers are also able to perform more precise analyses of processes shaping Titan's surface. Source:

Posted in: News

Read More >>

Chameleon-Like Material Changes Color on Demand

Researchers from the University of California at Berkeley have created a thin, chameleon-like material that can be made to change color — on demand — by applying a minute amount of force.The new material offers possibilities for display technologies, color-shifting camouflage, and sensors that can detect otherwise imperceptible defects in buildings, bridges, and aircraft.By etching tiny features — smaller than a wavelength of light — onto a silicon film one thousand times thinner than a human hair, the researchers were able to select the range of colors the material would reflect, depending on how it was flexed and bent.The researchers formed grating bars using a semiconductor layer of silicon approximately 120-nm thick. Silicon bars were then embedded into a flexible layer of silicone. As the silicone was bent or flexed, the period of the grating spacings responded in kind. The semiconductor technology produces materials that reflect up to 83% of the incoming light. The initial design created colors across a 39-nm range of wavelengths. Future designs, the researchers believe, could cover a wider range of colors and reflect light with even greater efficiency.SourceRead other Materials & Coatings tech briefs.

Posted in: News

Read More >>

BeeRotor Robot Equipped with Insect-Like Eye

Biorobotics researchers at the Institut des Sciences du Mouvement (Aix Marseille University) have developed the BeeRotor, a tethered flying robot. The robot adjusts its speed and follows terrain without an accelerometer or the measurement of altitude. Optic flow sensors, inspired by insect vision, allow the BeeRotor to adjust its speed and avoid objects. With a weight of 80 grams and a length of 47 centimeters, the device can independently avoid vertical obstacles in a tunnel with moving walls. To measure optic flow, environmental contrasts, and motion, BeeRotor is equipped with 24 photodiodes, distributed at the top and the bottom of its eye. As in insects, the speed at which scenery feature moves from one pixel to another provides the angular velocity of the flow.BeeRotor has three feedback loops, which act as three different reflexes that directly make use of the optic flow. The first feedback loop changes altitude, the second controls speed, and the final loop stabilizes the eye in relation to the local slope. By eliminating bulky accelerometers and inertial reference systems, the development could enable lighter robots and technologies.SourceAlso: Learn about a Self-Diagnostic Accelerometer FPGA.

Posted in: News

Read More >>

Sensors Detect Icing Conditions to Help Protect Airplanes

When ice accumulates on the surface of an aircraft during flight, it distorts the smooth flow of air necessary to stay aloft. The result is a reduction in lift, which can lead to stalls and crashes. Icing conditions can vary wildly within the same airspace. That’s why scientists at NASA’s Glenn Research Center are advancing the methods, technology, and accuracy of sensor systems to provide better detection of potential icing hazards around the nation’s airports. A ground-based station developed at Glenn includes sophisticated instruments such as a Ka-band cloud radar, which reads particle density distribution; a multi-frequency microwave radiometer that provides vertical temperature and water vapor profiles and a measure of liquid water present aloft; and a ceilometer for refined cloud base measurements. A series of weather balloons is being released to read and calibrate weather data, and validate the ground-based sensors. The balloons are fitted with an instrument package to measure pressure, temperature, humidity, and most importantly, supercooled liquid water content. When an airplane comes into contact with supercooled water, it attaches to the surface as ice. As it builds up, airframes are compromised. Source:

Posted in: News

Read More >>