News

Will We Drive On Solar Roadways?

An Idaho couple, Scott and Julie Brusaw, recently started an IndieGoGo campaign to raise money for their project, Solar Roadways, which wants to replace asphalt roads with high-strength glass-encased solar panels and LEDs. The panels could potentially light up, generate electricity, melt snow, or charge electronic vehicles. The government, however, would still need to test the roads, and cost estimates are unclear. The project currently has about 47,000 funders.

Posted in: Question of the Week

Read More >>

Thin Films Self-Assemble in One Minute

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have devised a technique whereby self-assembling nanoparticle arrays can form a highly ordered thin film over macroscopic distances in one minute.

Posted in: Electronics & Computers, Electronic Components, Photonics, Optics, Manufacturing & Prototyping, Materials, Coatings & Adhesives, Composites, Nanotechnology, News

Read More >>

New Supercapacitor Could Make Structural Energy Storage A Reality

Imagine a future in which our electrical gadgets are no longer limited by plugs and external power sources. This intriguing prospect is one of the reasons for the current interest in building the capacity to store electrical energy directly into a wide range of products, such as a laptop whose casing serves as its battery, or an electric car powered by energy stored in its chassis, or a home where the dry wall and siding store the electricity that runs the lights and appliances. It also makes the small, dull grey wafers that graduate student Andrew Westover and Assistant Professor of Mechanical Engineering Cary Pint have made in Vanderbilt's Nanomaterials and Energy Devices Laboratory far more important than their nondescript appearance suggests.

Posted in: Electronics & Computers, Electronic Components, Power Management, Energy Storage, Energy, Semiconductors & ICs, News

Read More >>

New Way To Make Sheets Of Graphene Discovered

Graphene's promise as a material for new kinds of electronic devices, among other uses, has led researchers around the world to study the material in search of new applications. But one of the biggest limitations to wider use of the strong, lightweight, highly conductive material has been the hurdle of fabrication on an industrial scale.

Posted in: Electronics & Computers, Electronic Components, Materials, Coatings & Adhesives, Solar Power, Energy, Semiconductors & ICs, News

Read More >>

Can Robots Be Emotional Companions?

Pepper, a new android from the Paris-based SoftBank Group, was unveiled last week in Tokyo. The 4-foot-tall robot has 20 movement-powering motors, a 10.1-inch touch display, and a synchronized, cloud-based database. Pepper also comes equipped with voice-recognition, as well functions that recognize human feelings and emotions. "I've believed that the most important role of robots will be as kind and emotional companions to enhance our daily lives, to bring happiness, constantly surprise us, and make people grow,” Bruno Maisonnier, founder and CEO of Aldebaran, said in a news release. “The emotional robot will create a new dimension in our lives and new ways of interacting with technology.”

Posted in: Question of the Week

Read More >>

Roof Tiles Clean the Air

A team of University of California, Riverside’s Bourns College of Engineering students has developed a titanium dioxide roof tile coating that removes up to 97 percent of smog-causing nitrogen oxides.The students' calculations show that 21 tons of nitrogen oxides would be eliminated daily if tiles on one million roofs were coated with their titanium dioxide mixture. The researchers coated two identical, off-the-shelf clay tiles with different amounts of titanium dioxide, a common compound found in everything from paint to food to cosmetics. The tiles were then placed inside a miniature atmospheric chamber that the students built out of wood, Teflon, and PVC piping.The chamber was connected to a source of nitrogen oxides and a device that reads concentrations of nitrogen oxides. The students used ultraviolet light to simulate sunlight, which activates the titanium dioxide and allows it to break down the nitrogen oxides. They found the titanium dioxide coated tiles removed between 88 percent and 97 percent of the nitrogen oxides.SourceAlso: Learn about Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen.

Posted in: Remediation Technologies, Green Design & Manufacturing, Materials, Coatings & Adhesives, Test & Measurement, News

Read More >>

Aircraft Wings Change Shape in Flight

The EU project SARISTU (Smart Intelligent Aircraft Structures) aims to reduce kerosene consumption by six percent, and integrating flexible landing devices into aircraft wings is one step towards that target. A new mechanism alters the landing flap’s shape to dynamically accommodate the airflow. Algorithms to control the required shape modifications in flight were programmed by the Fraunhofer Institute for Electronic Nano Systems ENAS in Chemnitz, in collaboration with colleagues from the Italian Aerospace Research Center (CIRA) and the University of Naples."We’ve come up with a silicon skin with alternate rigid and soft zones,” Said Andreas Lühring from Fraunhofer IFAM. “There are five hard and three soft zones, enclosed within a silicon skin cover extending over the top.”The mechanism sits underneath the soft zones, the areas that are most distended. While the novel design is noteworthy, it is the material itself that stands out, since the flexible parts are made of elastomeric foam that retains their elasticity even at temperatures ranging from -55 to 80° Celsius.Four 90-centimeter-long prototypes — two of which feature skin segments — are already undergoing testing.SourceAlso: Learn about Active Wing Shaping Control.

Posted in: Materials, Mechanical Components, Aerospace, Aviation, News

Read More >>