News

Water Splitter Runs on AAA Battery

Scientists at Stanford University have developed a low-cost, emissions-free device that uses an ordinary AAA battery to produce hydrogen by water electrolysis.  The battery sends an electric current through two electrodes that split liquid water into hydrogen and oxygen gas. Unlike other water splitters that use precious-metal catalysts, the electrodes in the Stanford device are made of inexpensive and abundant nickel and iron.In addition to producing hydrogen, the novel water splitter could be used to make chlorine gas and sodium hydroxide, an important industrial chemical. Splitting water to make hydrogen requires no fossil fuels and emits no greenhouse gases. But scientists have yet to develop an affordable, active water splitter with catalysts capable of working at industrial scales."It's been a constant pursuit for decades to make low-cost electrocatalysts with high activity and long durability," said Stanford University Professor Hongjie Dai. "When we found out that a nickel-based catalyst is as effective as platinum, it came as a complete surprise."SourceAlso: Learn about a Proton Exchange Membrane Fuel Cell.

Posted in: Batteries, Electronics & Computers, Power Management, Alternative Fuels, Green Design & Manufacturing, Materials, Metals, Energy, News

Read More >>

Researchers Create Energy-Absorbing Material

Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations.A team of engineers and scientists at Lawrence Livermore National Laboratory (LLNL) has found a way to design and fabricate, at the microscale, new cushioning materials with a broad range of programmable properties and behaviors that exceed the limitations of the material's composition, through additive manufacturing, also known as 3D printing. Livermore researchers, led by engineer Eric Duoss and scientist Tom Wilson, focused on creating a micro-architected cushion using a silicone-based ink that cures to form a rubber-like material after printing. During the printing process, the ink is deposited as a series of horizontally aligned filaments (which can be fine as a human hair) in a single layer. The second layer of filaments is then placed in the vertical direction. This process repeats itself until the desired height and pore structure is reached.The researchers envision using their novel energy-absorbing materials in many applications, including shoe and helmet inserts, protective materials for sensitive instrumentation, and in aerospace applications to combat the effects of temperature fluctuations and vibration.SourceAlso: Read more Materials tech briefs.

Posted in: Manufacturing & Prototyping, Rapid Prototyping & Tooling, Materials, Aerospace, Defense, News

Read More >>

DARPA Teams With Industry to Create Spaceplane

DARPA has created an Experimental Spaceplane (XS-1) to create a new paradigm for more routine, responsive, and affordable space operations. In an important step toward that goal, DARPA has awarded prime contracts for Phase 1 of XS-1 to three companies: The Boeing Company (working with Blue Origin, LLC), Masten Space Systems (working with XCOR Aerospace), and Northrop Grumman Corporation (working with Virgin Galactic).

Posted in: Aerospace, Aviation, Machinery & Automation, Robotics, RF & Microwave Electronics, Defense, News

Read More >>

Custom Surface Inspection System for Safety-Critical Processes

Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into the production process. Before a workpiece leaves the production plant, it is subjected to rigorous inspection. For safety-critical applications such as in the automotive or aerospace industries, manufacturers can only use the most impeccable parts.

Posted in: Cameras, Imaging, Manufacturing & Prototyping, Industrial Controls & Automation, Consumer Product Manufacturing, Test & Measurement, Measuring Instruments, Aerospace, News, Automotive

Read More >>

NASA 3D Printing Technique Creates Metal Spacecraft Parts

Researchers at NASA's Jet Propulsion Laboratory are implementing a printing process that transitions from one metal or alloy to another in a single object. JPL scientists have been developing a technique to address this problem since 2010. An effort to improve the methods of combining parts made of different materials in NASA's Mars Science Laboratory mission inspired a project to 3D print components with multiple alloy compositions.

Posted in: Manufacturing & Prototyping, Rapid Prototyping & Tooling, Materials, Metals, Aerospace, News

Read More >>

Would You Use a Wearable Baby Monitor?

A new technology from Sproutling, a startup founded by former Apple and Google engineers, is a wearable baby monitor. By strapping the device around an infant's ankle, parents can determine their child's heart rate, movement, and mood. The environmental sensor also measures the humidity, noise levels, and temperature of the baby's room. There are concerns, however, that the device introduces another gadget into the parenting process and keeps caregivers from making first-hand observations.

Posted in: Question of the Week

Read More >>

Researchers Develop Solar Technologies, Origami-Style

As a high school student at a study program in Japan, Brian Trease would fold wrappers from fast-food cheeseburgers into cranes. He loved discovering different origami techniques in library books.Today, Trease, a mechanical engineer at NASA’s Jet Propulsion Laboratory in Pasadena, California, thinks about how the principles of origami could be used for space-bound devices.Researchers say origami could be useful one day in utilizing space solar power for Earth-based purposes. Imagine an orbiting power plant that wirelessly beams power down to Earth using microwaves. Sending the solar arrays up to space would be easy, Trease said, because they could all be folded and packed into a single rocket launch, with "no astronaut assembly required."Panels used in space missions already incorporate simple folds, collapsing like a fan or an accordion. But Trease and colleagues are interested in using more intricate folds that simplify the overall mechanical structure and make for easier deployment.Last year, Zirbel and Trease collaborated with origami expert Robert Lang and BYU professor Larry Howell to develop a solar array that folds up to be 8.9 feet (2.7 meters) in diameter. Unfold it, and you’ve got a structure 82 feet (25 meters) across.SourceAlso: Learn about Origami-Inspired Folding of Thick, Rigid Panels.

Posted in: Mechanical Components, Solar Power, Renewable Energy, Energy Harvesting, Energy, Aerospace, RF & Microwave Electronics, Antennas, News

Read More >>