News

New Algorithms Enable Self-Assembling, Printable Robots

In two new papers, MIT researchers demonstrate the promise of printable robotic components that, when heated, automatically fold into prescribed three-dimensional configurations.One paper describes a system that takes a digital specification of a 3-D shape — such as a computer-aided design, or CAD, file — and generates the 2-D patterns that would enable a piece of plastic to reproduce it through self-folding.The other paper explains how to build electrical components from self-folding laser-cut materials. The researchers present designs for resistors, inductors, and capacitors, as well as sensors and actuators — the electromechanical “muscles” that enable robots’ movements.“We have this big dream of the hardware compiler, where you can specify, ‘I want a robot that will play with my cat,’ or ‘I want a robot that will clean the floor,’ and from this high-level specification, you actually generate a working device,” said Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT.SourceAlso: Learn about Self-Assembling, Flexible, Pre-Ceramic Composite Preforms.

Posted in: Electronics & Computers, Electronic Components, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Motion Control, Motors & Drives, Power Transmission, Sensors, Software, Computer-Aided Design (CAD), Mathematical/Scientific Software, Machinery & Automation, Robotics, News

Read More >>

Motion-Sensing Keyboard Lets Users Hover and Swipe

Microsoft engineers have developed a new type of augmented mechanical keyboard, sensing rich and expressive motion gestures performed both on and directly above the device. A low-resolution matrix of infrared (IR) proximity sensors is interspersed with the keys of a regular mechanical keyboard. This results in coarse, but high frame-rate motion data.

Posted in: Electronics & Computers, PCs/Portable Computers, Mechanical Components, Sensors, Software, Mathematical/Scientific Software, News

Read More >>

New Rotary Sensor Keeps Conveyor Belts Running Smoothly

Rotary sensors can help determine the position of a moveable body in relation to an axis. They are essential to the smooth running of car engines in the automotive industry, for example. In factories, goods and products are transported from one processing station to the next via conveyor belt. For the transfer from one belt to the next to run smoothly, it must take place precisely at a specific position, which means knowing the relative position of objects on the conveyor belts as they move towards each other. This can be determined from the angle of rotation, which refers to the position of a moveable body to an axis.

Posted in: Electronics & Computers, Electronic Components, Photonics, Optics, Manufacturing & Prototyping, Industrial Controls & Automation, Consumer Product Manufacturing, Sensors, Test & Measurement, Measuring Instruments, News

Read More >>

Wireless System Paves Way for 'Electroceutical' Medical Devices

A wireless system uses the same power as a cell phone to safely transmit energy to chips the size of a grain of rice. The technology paves the way for new "electroceutical" devices to treat illness or alleviate pain.The central discovery is an engineering breakthrough that creates a new type of wireless power transfer that can safely penetrate deep inside the body. The technology could spawn a new generation of programmable microimplants – sensors to monitor vital functions deep inside the body; electrostimulators to change neural signals in the brain; and drug delivery systems to apply medicines directly to affected areas.SourceAlso: Visit Medical Design Briefs.

Posted in: Electronics & Computers, Electronic Components, Power Management, Implants & Prosthetics, Medical, Drug Delivery & Fluid Handling, Patient Monitoring, Communications, Wireless, RF & Microwave Electronics, Semiconductors & ICs, News

Read More >>

Will You Use a Smartphone Spectrometer Before You Eat?

SCiO, a handheld molecular sensor, allows users to scan their food to check its nutritional value and alcohol, sugar, or calorie content. The spectroscopy product from the Israeli startup Consumer Physics is paired with a smartphone and shines near-infrared light on the food to stimulate and record molecular reactions. An accompanying app then displays the nutritional values for the users.

Posted in: Question of the Week

Read More >>

GPS Tide Gauge Measures Sea Level Change

Using radio signals from satellite navigation systems, Scientists at Chalmers Department of Earth and Space Sciences have developed and tested a Global Navigation Satellite System (GNSS) tide gauge, an instrument that measures the sea level.The GNSS tide gauge uses radio signals from satellites in orbit around the Earth that are part of satellite navigation systems like GPS and Glonass (Russia’s equivalent of GPS).Two antennas, covered by small white radomes, measure signals both directly from the satellites and signals reflected off the sea surface. By analyzing these signals together, the sea level and its variation can be measured, up to 20 times per second.”We measure the sea level using the same radio signals that mobile phones and cars use in their satellite navigation systems,” says researcher Johan Löfgren. “As the satellites pass over the sky, the instrument ‘sees’ their signals – both those that come direct and those that are reflected off the sea surface.” SourceAlso: Learn about Global Positioning System (GPS) Meteorology.

Posted in: Environmental Monitoring, Green Design & Manufacturing, Test & Measurement, Measuring Instruments, RF & Microwave Electronics, Antennas, News

Read More >>

Robotic Modules Transform into Configurable Furniture

EPFL scientists from the Biorobotics Laboratory (BIOROB) have developed small robotic modules that can change their shape to create reconfigurable furniture. Like Lego bricks, Roombots pieces can be stacked upon each other to create various structures. Each 22 cm-long piece, which looks like two large dice joined together, has a wireless connection. Inside are a battery and three motors that allow the module to pivot with three degrees of freedom. The modules have retractable "claws" that they use to attach to other pieces and form larger structures. With a series of rotations and connections, the modules can change shape and become any of a variety of objects and pieces of furniture. In order to metamorphose and to attach to passive elements, the Roombots need to anchor themselves to something, so the researchers developed a special surface with holes adapted to the Roombots' mechanical claws. Fixed to the walls, floor, and already existing pieces of furniture, these surfaces act as interfaces between the modules and their environment. The little robots can then climb the walls of a room, or attach themselves to "passive" elements on the furniture to form mobile tables or lamps that follow users around the room. "It could be very useful for disabled individuals to be able to ask objects to come closer to them, or to move out of the way," says Auke Ijspeert, head of the BIOROB.SourceAlso: Learn about a Kinetic Calibration Process for Flight Robotic Arms.

Posted in: Machinery & Automation, Robotics, News

Read More >>