News

Pocket-Sized Anthrax Detector Aids Global Agriculture

A credit-card-sized anthrax detection cartridge developed at Sandia National Laboratories and recently licensed to a small business makes testing safer, easier, faster and cheaper.Bacillus anthracis, the bacteria that causes anthrax, is commonly found in soils all over the world and can cause serious, and often fatal, illness in both humans and animals. The bacteria can survive in harsh conditions for decades. In humans, exposure to B. anthracis may occur through skin contact, inhalation of spores or eating contaminated meat.The new device, which is more like a pocket-sized laboratory, could cost around $5-7 and does not require a battery, electric power, or other specialized tools to operate.SourceAlso: See other Sensors tech briefs.

Posted in: Green Design & Manufacturing, Sensors, Detectors, Defense, News

Read More >>

Versatile Adhesive Mimics Gecko Feet

A team of University of Massachusetts Amherst inventors created a new, more versatile version of their invention, Geckskin. The technology adheres strongly to a wider range of surfaces, yet releases easily, like a gecko’s feet.“Imagine sticking your tablet on a wall to watch your favorite movie and then moving it to a new location when you want, without the need for pesky holes in your painted wall,” says polymer science and engineering professor Al Crosby. Geckskin is a ‘gecko-like,’ reusable adhesive device that they had previously demonstrated can hold heavy loads on smooth surfaces such as glass.Unlike other gecko-like materials, the UMass Amherst invention does not rely on mimicking the tiny, nanoscopic hairs found on gecko feet, but rather builds on “draping adhesion,” which derives from the gecko’s integrated anatomical skin-tendon-bone system. SourceAlso: See other Materials tech briefs.

Posted in: Materials, Coatings & Adhesives, News

Read More >>

Will Jetpacks Take Flight?

The New Zealand-based Martin Aircraft Company has developed a commercially viable jetpack. The Martin Jetpack contains two cylinders with propulsion fans attached to a carbon-fiber frame. A strapped-in pilot uses two joysticks to control the wingless pack. The company aims to have the jetpack available for commercial flight sometime in 2014 if manned flight testing produces favorable results. Although the cost ($150,000) may be expensive for a personal vehicle, the Martin Jetpack could also be useful to emergency response and search-and-rescue teams.

Posted in: Question of the Week

Read More >>

Nanomaterial Extends Lithium-Sulfur Battery Lifespan

A new nanomaterial could extend the lifespan of lithium-sulfur batteries, and therefore the driving range of electric vehicles.Pacific Northwest National Laboratory researchers added the powder to the battery's cathode to capture problematic polysulfides that usually cause lithium-sulfur batteries to fail after a few charges.Metal organic frameworks — also called MOFs — are crystal-like compounds made of metal clusters connected to organic molecules, or linkers. Together, the clusters and linkers assemble into porous 3-D structures. During lab tests, a lithium-sulfur battery with PNNL's MOF cathode maintained 89 percent of its initial power capacity after 100 charge-and discharge cycles. Having shown the effectiveness of their MOF cathode, PNNL researchers now plan to further improve the cathode's mixture of materials so it can hold more energy.SourceAlso: Check out other Materials tech briefs.

Posted in: Batteries, Electronics & Computers, Power Management, Materials, Metals, Nanotechnology, News

Read More >>

Engineers Develop 'Simple' Robotic Swarms

University of Sheffield engineers have developed a way of making hundreds — or even thousands — of tiny robots cluster to carry out tasks. The robots do not require memory or processing power. Each robot uses just one sensor that indicates the presence of another nearby robot. Based on the sensor's findings, the robots will either rotate on the spot, or move around in a circle until one can be seen.Until now, robotic swarms have required complex programming, complicating the development of miniaturized, individual robots. With the programming created by the Sheffield team, however, nanoscale machines are possible.SourceAlso: Learn about a Kinematic Calibration Process for Flight Robotic Arms.

Posted in: Motion Control, Sensors, Machinery & Automation, Robotics, News

Read More >>

Will "Flying Cars" Become a Reality?

A Boston-based aerospace company Terrafugia announced last year that it began work on its TF-6, a four-seat hybrid electric car that can do vertical take-offs and landings. The vehicle has foldable wings, cruises at 100 miles per hour, fits inside a single-car garage, and drives at highway speeds. With the new prototype, Terrafugia believes that users can learn to operate the TF-X in just five hours. Users will have to learn how to interface with the vehicle; how to determine if it's safe to take off and land; and when to activate the vehicle's parachute system in the event of an emergency.

Posted in: Question of the Week

Read More >>

Switchable Material Absorbs and Stores Sun's Energy

A team at MIT and Harvard University has created a material that absorbs the sun’s heat and stores that energy in chemical form, ready to be released again on demand.The technology provides an opportunity for the expansion of solar power into new realms, specifically applications where heat is the desired output.“It could change the game, since it makes the sun’s energy, in the form of heat, storable and distributable,” says Jeffrey Grossman, the Carl Richard Soderberg Associate Professor of Power Engineering at MIT.SourceAlso: See other Materials tech briefs.

Posted in: Materials, Energy Storage, Solar Power, Renewable Energy, Energy, News

Read More >>