Army Equips Stryker Unit With New Communications Technology

The Army's Stryker vehicle, designed to quickly move soldiers into a combat zone, is swift and mobile. Now its communications equipment will be, too.

Posted in: News, Wireless


Energy Harvesting Could Help Power Spacecraft of the Future

A consortium is working on a project to maximize energy harvesting on a spacecraft of the future. The initiative seeks to find energy-saving and -maximizing solutions to enable eco-friendly aircraft to stay in space for long periods of time without the need to return to Earth to re-fuel, or to avoid carrying vast amounts of heavy fuel on long-stay journeys.

Posted in: News, Aviation, Energy Efficiency, Energy Harvesting


Air Traffic Lab Answers Questions About Future Flying

The holiday season is upon us and that means crowded airports and delayed flights. Researchers at NASA's Langley Research Center are working to change that. They are conducting studies to help reshape the future of American air travel in a brand-new Air Traffic Operations Laboratory (ATOL). They are studying the Next Generation Air Transportation System, a new national airspace technology being implemented by the Federal Aviation Administration.

Posted in: News, Aviation


Wireless Devices Used by Pilots are Vulnerable to Hacking

A new class of apps and wireless devices used by private pilots are vulnerable to a wide range of security attacks, which in some scenarios could lead to catastrophic outcomes, according to computer scientists at the University of California, San Diego and Johns Hopkins University. They examined three combinations of devices and apps most commonly used by private pilots to access the same information available to the pilot of a private jet at a fraction of the cost. All have to be paired with tablet computers to display information.

Posted in: News, Aviation, PCs/Portable Computers


Killer Robots - Army Studies Challenges of Remote Lethality

The military has used and experimented with robots that perform functions such as scouting and surveillance, carrying supplies and detecting and disposing of improvised homemade bombs. However, when it comes to integrating lethality, such as a weapon capable of firing 10 rounds per second onto an unmanned ground vehicle, issues arise such as safety, effectiveness and reliability, as well as military doctrine on how much human involvement is required.

Posted in: News, Machinery & Automation, Robotics


3D Audio Research Helps Make Cockpit Safer

Imagine yourself in a cockpit, flying a mission, listening to a multitude of critical voices delivering vital messages, all at the same time and from the same direction. Now imagine the same environment, except that the voices are now distinct and separate. The Air Force Research Laboratory (AFRL) has developed 3D sound technology that creates a sound environment that mimics the way the human body receives aural cues, much like 3D movies create the perception that the viewer is part of the movie.

Posted in: News, Aviation


Ocean Gliders Measure Melting Polar Ice

The rapidly melting ice sheets on the coast of West Antarctica are a potentially major contributor to rising ocean levels worldwide. Although warm water near the coast is thought to be the main factor causing the ice to melt, the process by which this water ends up near the cold continent is not well understood. Using robotic ocean gliders, Caltech researchers have now found that swirling ocean eddies, similar to atmospheric storms, play an important role in transporting these warm waters to the Antarctic coast—a discovery that will help the scientific community determine how rapidly the ice is melting and, as a result, how quickly ocean levels will rise. "When you have a melting slab of ice, it can either melt from above because the atmosphere is getting warmer or it can melt from below because the ocean is warm," explains lead author Andrew Thompson, assistant professor of environmental science and engineering. "All of our evidence points to ocean warming as the most important factor affecting these ice shelves, so we wanted to understand the physics of how the heat gets there." Because the gliders are small—only about six feet long—and are very energy efficient, they can sample the ocean for much longer periods than large ships can. When the glider surfaces every few hours, it "calls" the researchers via a mobile phone–like device located on the tail. The communication allows the researchers to almost immediately access the information the glider has collected. Like airborne gliders, the bullet-shaped ocean gliders have no propeller; instead they use batteries to power a pump that changes the glider's buoyancy. When the pump pushes fluid into a compartment inside the glider, the glider becomes denser than seawater and less buoyant, thus causing it to sink. If the fluid is pumped instead into a bladder on the outside of the glider, the glider becomes less dense than seawater—and therefore more buoyant—ultimately rising to the surface. Like airborne gliders, wings convert this vertical lift into horizontal motion. Source Also: Learn about Remote Sensing of Ice Sheets and Snow.

Posted in: News, Batteries, Environmental Monitoring, Machinery & Automation, Robotics, Measuring Instruments, Monitoring


White Papers

Force Sensors for Design
Sponsored by Tekscan
An Introduction to LED Capabilities
Sponsored by Photo Research
The Need for Speed
Sponsored by flir
Assisting An Aging Population: Designing Medical Devices With Force Sensing Technology
Sponsored by tekscan
Adhesives, Sealants & Coatings for the Aerospace Industry
Sponsored by master bond
SWaP-C and Why Your Component Partner Matters
Sponsored by sparton

White Papers Sponsored By: