Communications

Energy Harvesting Could Help Power Spacecraft of the Future

A consortium is working on a project to maximize energy harvesting on a spacecraft of the future. The initiative seeks to find energy-saving and -maximizing solutions to enable eco-friendly aircraft to stay in space for long periods of time without the need to return to Earth to re-fuel, or to avoid carrying vast amounts of heavy fuel on long-stay journeys.

Posted in: Green Design & Manufacturing, Energy Efficiency, Energy Harvesting, Energy, Test & Measurement, Communications, Aerospace, Aviation, News

Read More >>

Air Traffic Lab Answers Questions About Future Flying

The holiday season is upon us and that means crowded airports and delayed flights. Researchers at NASA's Langley Research Center are working to change that. They are conducting studies to help reshape the future of American air travel in a brand-new Air Traffic Operations Laboratory (ATOL). They are studying the Next Generation Air Transportation System, a new national airspace technology being implemented by the Federal Aviation Administration.

Posted in: Communications, Aerospace, Aviation, RF & Microwave Electronics, News

Read More >>

Wireless Devices Used by Pilots are Vulnerable to Hacking

A new class of apps and wireless devices used by private pilots are vulnerable to a wide range of security attacks, which in some scenarios could lead to catastrophic outcomes, according to computer scientists at the University of California, San Diego and Johns Hopkins University. They examined three combinations of devices and apps most commonly used by private pilots to access the same information available to the pilot of a private jet at a fraction of the cost. All have to be paired with tablet computers to display information.

Posted in: Electronics & Computers, PCs/Portable Computers, Communications, Aerospace, Aviation, Defense, News

Read More >>

Killer Robots - Army Studies Challenges of Remote Lethality

The military has used and experimented with robots that perform functions such as scouting and surveillance, carrying supplies and detecting and disposing of improvised homemade bombs. However, when it comes to integrating lethality, such as a weapon capable of firing 10 rounds per second onto an unmanned ground vehicle, issues arise such as safety, effectiveness and reliability, as well as military doctrine on how much human involvement is required.

Posted in: Communications, Machinery & Automation, Robotics, Defense, News

Read More >>

3D Audio Research Helps Make Cockpit Safer

Imagine yourself in a cockpit, flying a mission, listening to a multitude of critical voices delivering vital messages, all at the same time and from the same direction. Now imagine the same environment, except that the voices are now distinct and separate. The Air Force Research Laboratory (AFRL) has developed 3D sound technology that creates a sound environment that mimics the way the human body receives aural cues, much like 3D movies create the perception that the viewer is part of the movie.

Posted in: Communications, Aerospace, Aviation, RF & Microwave Electronics, News

Read More >>

Ocean Gliders Measure Melting Polar Ice

The rapidly melting ice sheets on the coast of West Antarctica are a potentially major contributor to rising ocean levels worldwide. Although warm water near the coast is thought to be the main factor causing the ice to melt, the process by which this water ends up near the cold continent is not well understood. Using robotic ocean gliders, Caltech researchers have now found that swirling ocean eddies, similar to atmospheric storms, play an important role in transporting these warm waters to the Antarctic coast—a discovery that will help the scientific community determine how rapidly the ice is melting and, as a result, how quickly ocean levels will rise. "When you have a melting slab of ice, it can either melt from above because the atmosphere is getting warmer or it can melt from below because the ocean is warm," explains lead author Andrew Thompson, assistant professor of environmental science and engineering. "All of our evidence points to ocean warming as the most important factor affecting these ice shelves, so we wanted to understand the physics of how the heat gets there." Because the gliders are small—only about six feet long—and are very energy efficient, they can sample the ocean for much longer periods than large ships can. When the glider surfaces every few hours, it "calls" the researchers via a mobile phone–like device located on the tail. The communication allows the researchers to almost immediately access the information the glider has collected. Like airborne gliders, the bullet-shaped ocean gliders have no propeller; instead they use batteries to power a pump that changes the glider's buoyancy. When the pump pushes fluid into a compartment inside the glider, the glider becomes denser than seawater and less buoyant, thus causing it to sink. If the fluid is pumped instead into a bladder on the outside of the glider, the glider becomes less dense than seawater—and therefore more buoyant—ultimately rising to the surface. Like airborne gliders, wings convert this vertical lift into horizontal motion. Source Also: Learn about Remote Sensing of Ice Sheets and Snow.

Posted in: Batteries, Electronics & Computers, Environmental Monitoring, Green Design & Manufacturing, Motion Control, Test & Measurement, Measuring Instruments, Monitoring, Communications, Machinery & Automation, Robotics, News

Read More >>

Cockroach Biobots Detect Sound

North Carolina State University researchers have developed technology that allows cyborg cockroaches, or biobots, to pick up sounds with small microphones and seek out the source of the sound. The technology is designed to help emergency personnel find and rescue survivors in the aftermath of a disaster.The researchers have also developed technology that can be used as an “invisible fence” to keep the biobots in the disaster area.“In a collapsed building, sound is the best way to find survivors,” says Dr. Alper Bozkurt, an assistant professor of electrical and computer engineering at NC State and senior author of two papers on the work.The biobots are equipped with electronic backpacks that control the cockroach’s movements. Bozkurt’s research team has created two types of customized backpacks using microphones. One type of biobot has a single microphone that can capture relatively high-resolution sound from any direction to be wirelessly transmitted to first responders.The second type of biobot is equipped with an array of three directional microphones to detect the direction of the sound. The research team has also developed algorithms that analyze the sound from the microphone array to localize the source of the sound and steer the biobot in that direction. SourceAlso: Learn about FINDER (Finding Individuals for Disaster and Emergency Response).

Posted in: Electronics & Computers, Communications, Wireless, Machinery & Automation, Robotics, News

Read More >>