Data Acquisition

GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

This technique improves weather-forecasting operations. Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Administration National Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting.

Posted in: Physical Sciences, Data Acquisition, Briefs, TSP

Read More >>

Datacasting V3.0

Datacasting V3.0 provides an RSS-based feed mechanism for publishing the availability of Earth science data records in real time. It also provides a utility for subscribing to these feeds and sifting through all the items in an automatic manner to identify and download the data records that are required for a specific application.

Posted in: Software, Data Acquisition, Briefs, TSP

Read More >>

Integrating a Microwave Radiometer into Radar Hardware for Simultaneous Data Collection Between the Instruments

Electronics are shared between the instruments. The conventional method for integrating a radiometer into radar hardware is to share the RF front end between the instruments, and to have separate IF receivers that take data at separate times. Alternatively, the radar and radiometer could share the antenna through the use of a diplexer, but have completely independent receivers. This novel method shares the radar’s RF electronics and digital receiver with t he radiometer, while allowing for simultaneous operation of the ra da r and radiometer.

Posted in: Physical Sciences, Data Acquisition, Briefs, TSP

Read More >>

Cryogenic Liquid Sample Acquisition System for Remote Space Applications

There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application.

Posted in: Physical Sciences, Data Acquisition, Briefs, TSP

Read More >>

White Papers

Noncontact Differential Impedance Transducer
Sponsored by Kaman
Oscilloscope Fundamentals Primer
Sponsored by Rohde and Schwarz
Are you tired of maintaining UPS Systems?
Sponsored by Falcon
Avionics Reliability – Thermal Design Considerations
Sponsored by Mentor Graphics
Linear Motors Application Guide
Sponsored by Aerotech
Connectors Outperform Fardwiring for Manufacturers and Their Customers
Sponsored by Harting

White Papers Sponsored By: