Batteries
'Solar Battery' Runs on Light and Air
Posted in News, Batteries, Electronic Components, Power Management, Energy Storage, Renewable Energy, Solar Power on Tuesday, 07 October 2014
Ohio State University researchers report that they have succeeded in combining a battery and a solar cell into one hybrid device.

Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.

The university will license the solar battery to industry, where Yiying Wu, professor of chemistry and biochemistry at Ohio State, says it will help tame the costs of renewable energy.

“The state of the art is to use a solar panel to capture the light, and then use a cheap battery to store the energy,” Wu said. “We’ve integrated both functions into one device. Any time you can do that, you reduce cost.”

During charging, light hits the mesh solar panel and creates electrons. Inside the battery, electrons are involved in the chemical decomposition of lithium peroxide into lithium ions and oxygen. The oxygen is released into the air, and the lithium ions are stored in the battery as lithium metal after capturing the electrons.

When the battery discharges, it chemically consumes oxygen from the air to re-form the lithium peroxide. An iodide additive in the electrolyte acts as a “shuttle” that carries electrons, and transports them between the battery electrode and the mesh solar panel.

The use of the additive represents a distinct approach on improving the battery performance and efficiency, the team said. The invention eliminates the loss of electricity that normally occurs when electrons have to travel between a solar cell and an external battery.

Source

Also: Learn about Full-Cell Evaluation for New Battery Chemistries.
Read More >>
Exploring Batteries for Micromachinery
Posted in News, Batteries, Electronic Components, Electronics on Friday, 03 October 2014
A team of researchers from the National Institute of Standards and Technology, Gaithersburg, MD, along with other institutions, has developed a toolset to allow them to explore the interior of microscopic, multi-layered batteries. This allows them insight into the batteries’ performance without destroying them—resulting in both a useful probe for scientists and a potential power source for micromachines.
Read More >>
Engineers Prepare Battery Module Swapping Approach for Electric Cars
Posted in News, Batteries, Power Management, Renewable Energy, Solar Power on Friday, 19 September 2014
Imagine being able to switch out the batteries in electric cars just like you switch out batteries in a photo camera or flashlight. A team of engineers at the University of California, San Diego, are trying to accomplish just that, in partnership with a local San Diego engineering company.

Rather than swapping out the whole battery, which is cumbersome and requires large, heavy equipment, engineers plan to swap out and recharge smaller units within the battery, known as modules.

Swapping battery modules could also have far-reaching implications for mobile and decentralized electrical energy storage systems such as solar backup and portable generators. The technology can make energy storage more configurable, promote safety, simplify maintenance and eventually eliminate the use of fossil fuels for these applications.

Engineers not only believe that their approach is viable, but also plan to prove it. They will embark on a cross-country trip with a car powered by the removable, rechargeable M-BEAM, or Modular Battery Exchange and Active Management, battery modules.  They plan to drive from coast to coast only taking breaks that are a few minutes long to swap out the modules that will be recharged in a chase vehicle. They believe they can drive from San Diego to the coast of South Carolina less than 60 hours — without going over the speed limit.

Source

Also: Learn about a Full-Cell Evaluation/Screening Technique for New Battery Chemistries.
Read More >>
Germanium Nanowires Could Improve Batteries
Posted in News, Batteries, Power Supplies, Metals on Thursday, 04 September 2014
A team of scientists at Missouri University of Science and Technology, Rolla, developed a one-step approach to growing germanium nanowires from an aqueous solution. They say that their process may lead to a simpler, less expensive way to use germanium in lithium-ion batteries.
Read More >>
Water Splitter Runs on AAA Battery
Posted in News, Batteries, Power Management, Alternative Fuels, Metals on Friday, 22 August 2014
Scientists at Stanford University have developed a low-cost, emissions-free device that uses an ordinary AAA battery to produce hydrogen by water electrolysis.  The battery sends an electric current through two electrodes that split liquid water into hydrogen and oxygen gas. Unlike other water splitters that use precious-metal catalysts, the electrodes in the Stanford device are made of inexpensive and abundant nickel and iron.

In addition to producing hydrogen, the novel water splitter could be used to make chlorine gas and sodium hydroxide, an important industrial chemical.

Splitting water to make hydrogen requires no fossil fuels and emits no greenhouse gases. But scientists have yet to develop an affordable, active water splitter with catalysts capable of working at industrial scales.

"It's been a constant pursuit for decades to make low-cost electrocatalysts with high activity and long durability," said Stanford University Professor Hongjie Dai. "When we found out that a nickel-based catalyst is as effective as platinum, it came as a complete surprise."

Source

Also: Learn about a Proton Exchange Membrane Fuel Cell.
Read More >>
Sweat Powers These Tattoo Biobatteries
Posted in News, Batteries, Power Supplies, Patient Monitoring on Monday, 18 August 2014
A team of researchers at the University of California, San Diego, has designed a sensor applied as a temporary tattoo that can not only monitor a person’s progress during exercise but produce power generated by their perspiration that may be used to energize small electronic devices.
Read More >>
Designing a Pure Lithium Anode
Posted in News, Batteries, Electronic Components, Electronics, Power Management, Power Supplies on Tuesday, 05 August 2014
The race is on to design smaller, cheaper, and more efficient rechargeable batteries to meet power storage needs. Now, a team of researchers at Stanford University report that they have taken a big step toward designing a pure lithium anode, which, they say, would greatly advance current lithium ion batteries.
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.