Batteries

Robots Restore Electricity After Power Outages

A team led by Nina Mahmoudian of Michigan Technological University has developed a tabletop model of a robot team that can bring power to places that need it the most.“If we can regain power in communication towers, then we can find the people we need to rescue,” says Mahmoudian, an assistant professor of mechanical engineering–engineering mechanics. “And the human rescuers can communicate with each other.”Unfortunately, cell towers are often located in hard-to-reach places, she says. “If we could deploy robots there, that would be the first step toward recovery.”The team has programmed robots to restore power in small electrical networks, linking up power cords and batteries to light a little lamp or set a flag to waving with a small electrical motor. The robots operate independently, choosing the shortest path and avoiding obstacles, just as you would want them to if they were hooking up an emergency power source to a cell tower.“Our robots can carry batteries, or possibly a photovoltaic system or a generator,” Mahmoudian said. The team is also working with Wayne Weaver, the Dave House Associate Professor of Electrical Engineering, to incorporate a power converter, since different systems and countries have different electrical requirements. SourceAlso: Learn about Locomotion of Amorphous Surface Robots.

Posted in: News, Communications, Wireless, Batteries, Electronics & Computers, Power Management, Energy, Energy Storage, Solar Power, Machinery & Automation, Robotics

Read More >>

'Solar Battery' Runs on Light and Air

Ohio State University researchers report that they have succeeded in combining a battery and a solar cell into one hybrid device.Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.The university will license the solar battery to industry, where Yiying Wu, professor of chemistry and biochemistry at Ohio State, says it will help tame the costs of renewable energy.“The state of the art is to use a solar panel to capture the light, and then use a cheap battery to store the energy,” Wu said. “We’ve integrated both functions into one device. Any time you can do that, you reduce cost.”During charging, light hits the mesh solar panel and creates electrons. Inside the battery, electrons are involved in the chemical decomposition of lithium peroxide into lithium ions and oxygen. The oxygen is released into the air, and the lithium ions are stored in the battery as lithium metal after capturing the electrons.When the battery discharges, it chemically consumes oxygen from the air to re-form the lithium peroxide. An iodide additive in the electrolyte acts as a “shuttle” that carries electrons, and transports them between the battery electrode and the mesh solar panel. The use of the additive represents a distinct approach on improving the battery performance and efficiency, the team said. The invention eliminates the loss of electricity that normally occurs when electrons have to travel between a solar cell and an external battery.SourceAlso: Learn about Full-Cell Evaluation for New Battery Chemistries.

Posted in: News, Batteries, Electronic Components, Electronics & Computers, Power Management, Energy, Energy Storage, Renewable Energy, Solar Power, Semiconductors & ICs

Read More >>

Engineers Prepare Battery Module Swapping Approach for Electric Cars

Imagine being able to switch out the batteries in electric cars just like you switch out batteries in a photo camera or flashlight. A team of engineers at the University of California, San Diego, are trying to accomplish just that, in partnership with a local San Diego engineering company.Rather than swapping out the whole battery, which is cumbersome and requires large, heavy equipment, engineers plan to swap out and recharge smaller units within the battery, known as modules.Swapping battery modules could also have far-reaching implications for mobile and decentralized electrical energy storage systems such as solar backup and portable generators. The technology can make energy storage more configurable, promote safety, simplify maintenance and eventually eliminate the use of fossil fuels for these applications.Engineers not only believe that their approach is viable, but also plan to prove it. They will embark on a cross-country trip with a car powered by the removable, rechargeable M-BEAM, or Modular Battery Exchange and Active Management, battery modules.  They plan to drive from coast to coast only taking breaks that are a few minutes long to swap out the modules that will be recharged in a chase vehicle. They believe they can drive from San Diego to the coast of South Carolina less than 60 hours — without going over the speed limit.SourceAlso: Learn about a Full-Cell Evaluation/Screening Technique for New Battery Chemistries.

Posted in: News, Automotive, Batteries, Electronics & Computers, Power Management, Energy, Renewable Energy, Solar Power

Read More >>

Water Splitter Runs on AAA Battery

Scientists at Stanford University have developed a low-cost, emissions-free device that uses an ordinary AAA battery to produce hydrogen by water electrolysis.  The battery sends an electric current through two electrodes that split liquid water into hydrogen and oxygen gas. Unlike other water splitters that use precious-metal catalysts, the electrodes in the Stanford device are made of inexpensive and abundant nickel and iron.In addition to producing hydrogen, the novel water splitter could be used to make chlorine gas and sodium hydroxide, an important industrial chemical. Splitting water to make hydrogen requires no fossil fuels and emits no greenhouse gases. But scientists have yet to develop an affordable, active water splitter with catalysts capable of working at industrial scales."It's been a constant pursuit for decades to make low-cost electrocatalysts with high activity and long durability," said Stanford University Professor Hongjie Dai. "When we found out that a nickel-based catalyst is as effective as platinum, it came as a complete surprise."SourceAlso: Learn about a Proton Exchange Membrane Fuel Cell.

Posted in: News, Batteries, Electronics & Computers, Power Management, Energy, Alternative Fuels, Green Design & Manufacturing, Materials, Metals

Read More >>

Power for Extreme Environments

Specifying the ideal power management solution for remote wireless devices found in extreme environments and hard-to-access locations requires more ruggedized solutions. Fortunately, two viable options are now available: lithium thionyl chloride (LiSOCL2) chemistry that can operate for 40+ years, and energy harvesting devices coupled with special rechargeable lithium-ion batteries designed for extreme environments that can deliver up to 20+ years of battery life. Lithium thionyl chloride chemistry is proven for use in extreme environments.

Posted in: Articles, Batteries, Energy

Read More >>

Nanomaterial Extends Lithium-Sulfur Battery Lifespan

A new nanomaterial could extend the lifespan of lithium-sulfur batteries, and therefore the driving range of electric vehicles.Pacific Northwest National Laboratory researchers added the powder to the battery's cathode to capture problematic polysulfides that usually cause lithium-sulfur batteries to fail after a few charges.Metal organic frameworks — also called MOFs — are crystal-like compounds made of metal clusters connected to organic molecules, or linkers. Together, the clusters and linkers assemble into porous 3-D structures. During lab tests, a lithium-sulfur battery with PNNL's MOF cathode maintained 89 percent of its initial power capacity after 100 charge-and discharge cycles. Having shown the effectiveness of their MOF cathode, PNNL researchers now plan to further improve the cathode's mixture of materials so it can hold more energy.SourceAlso: Check out other Materials tech briefs.

Posted in: News, Batteries, Electronics & Computers, Power Management, Materials, Metals, Nanotechnology

Read More >>

Self-Charging Power Cell for Small Devices

A hybrid power cell uses a new technique for electrical charge conversion and storage. Scientists at Georgia Tech say that they have developed a new self-charging power cell technology that directly converts mechanical energy to chemical energy. Then, the power is stored until it is needed to generate electricity. This hybrid generator- storage cell utilizes mechanical energy more efficiently than systems using separate generators and batteries, they say.

Posted in: Briefs, MDB, Briefs, Batteries, Electronic Components, Electronics, Power Supplies, Medical

Read More >>

White Papers

Adhesives, Sealants and Coatings for the Aerospace Industry
Sponsored by Master Bond
Introduction to Machine Vision
Sponsored by Cognex
Evolution of the Modern Receiver in a Crowded Spectrum Environment
Sponsored by Rohde and Schwarz AD
How to Turn Your Engineers Into Product Design Superheroes
Sponsored by Arena Solutions
Molds for Medical Technology
Sponsored by Husky
Safety in SoCs
Sponsored by Synopsys

White Papers Sponsored By:

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.