The Economics of Accuracy in Low-cost, High-volume Sensing Applications

Various research firms forecast the market for portable medical devices to be somewhere around the $20 billion-range within the next several years. Part of the increased demand is due to an aging population with more chronic conditions. These smaller portable units requires devices with smaller footprints. By the same token, smaller devices need to provide adequate levels of care to ensure patient safety and comfort. Thus, functionality cannot be sacrificed for space.

Posted in: White Papers, White Papers, Electronics, Electronics & Computers, Semiconductors & ICs, Data Acquisition, Sensors


Developing and Testing Electronic Control Units for Electric Drives

Air framers are looking to build more eco-friendly and economical aircraft, and they are turning to electric drives. One growing trend is to build more electrical aircraft by replacing pneumatic and hydraulic systems with electric actuators. Electric drives, therefore, will play an important role in the aircraft of the future. This paper examines the current state of technology for developing and testing electric drives.

Posted in: White Papers, White Papers, Aeronautics, Electronics, Electronics & Computers, Test & Measurement


A High-Efficiency Power Module

Innovators at NASA’s Glenn Research Center have developed a microwave power module to power radar, communications, and/or navigation interchangeably. This high-efficiency, all-solid-state microwave power module (MPM) is based on a multi-stage distributed-amplifier design, which is capable of very wideband operation. This MPM is extremely durable and can last a decade or longer. Already more compact and lightweight than conventional designs, Glenn’s patented technique offers further size reduction by eliminating the need for either a traveling-wave tube amplifier or its accompanying kV-class electronic power conditioner. The performance of this MPM is exceptional, with much higher cut-off frequency and maximum frequency of oscillation than metal-semiconductor field-effect transistors offer, and the distributed amplifier’s wide bandwidth also results in much faster pulse rise times. Finally, Glenn’s design allows the module to operate in both pulsed and continuous wave modes, so it can single-handedly drive exceptional performance for radar, navigation, and communications.

Posted in: Briefs, Electronics


Key Considerations for Powertrain HIL Test

Safety, availability, and cost considerations can make performing thorough tests of embedded control devices using the complete system impractical. Hardware-in-the-loop (HIL) simulation is a real-time test technique used to test these devices more efficiently. During HIL test, the physical system that interfaces to an embedded control device is simulated on real-time hardware, and the outputs of the simulator mimic the actual output of the physical system. The embedded controller “thinks” it is in a real system. HIL simulation meticulously tests embedded control devices in a virtual environment before proceeding to real-world tests of the complete system. This application note covers recommended best practices for powertrain HIL testing.

Posted in: White Papers, Electronics, Electronics & Computers, Simulation Software, Software


AGM Thumbtack™ Valves for Small Enclosures: Smaller and Drier

Sensitive equipment such as optics and electronics can be damaged by humidity and condensation. Placing moisture-sensitive equipment inside a sealed enclosure reduces the risk of damage, but temperature and pressure variations can be problematic for a sealed enclosure if it does not have a pressure-relief mechanism.

Posted in: White Papers, Defense, Electronics, Electronics & Computers, Instrumentation


Tailor-made Computing Solutions Require Diverse I/O Functions

More than ever, users from industry and transportation expect the full system solution, but no longer want to have to worry about the cumbersome configuration and integration of individual hardware components and adapting the software. There is a very simple reason for this: the system supplier of their choice reduces the time to market and is also responsible for the entire system at the same time.

Posted in: White Papers, Communications, Electronics, Electronics & Computers, Electronics & Computers, Software


How to Manage Heat in Modular, COTS Enclosures

As components shrink, embedded systems have made their way into smaller and more mobile applications. Systems need to withstand more intense vibration, shock and EMI parameters and still function effectively. All of this affects the ruggedization of enclosures.

Posted in: White Papers, Defense, Electronics, Manufacturing & Prototyping


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.