Electronics

Researchers Create Smallest Transistor Ever

A research team led by faculty scientist Ali Javey at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has created a transistor with a working 1-nanometer gate — the smallest to date.

Posted in: News, Board-Level Electronics, Electronic Components, Electronics, Electronics & Computers, PCs/Portable Computers
Read More >>

The Economics of Accuracy in Low-cost, High-volume Sensing Applications

Various research firms forecast the market for portable medical devices to be somewhere around the $20 billion-range within the next several years. Part of the increased demand is due to an aging population with more chronic conditions. These smaller portable units requires devices with smaller footprints. By the same token, smaller devices need to provide adequate levels of care to ensure patient safety and comfort. Thus, functionality cannot be sacrificed for space.

Posted in: White Papers, White Papers, Electronics, Electronics & Computers, Semiconductors & ICs, Data Acquisition, Sensors
Read More >>

Developing and Testing Electronic Control Units for Electric Drives

Air framers are looking to build more eco-friendly and economical aircraft, and they are turning to electric drives. One growing trend is to build more electrical aircraft by replacing pneumatic and hydraulic systems with electric actuators. Electric drives, therefore, will play an important role in the aircraft of the future. This paper examines the current state of technology for developing and testing electric drives.

Posted in: White Papers, White Papers, Aeronautics, Electronics, Electronics & Computers, Test & Measurement
Read More >>

A High-Efficiency Power Module

Innovators at NASA’s Glenn Research Center have developed a microwave power module to power radar, communications, and/or navigation interchangeably. This high-efficiency, all-solid-state microwave power module (MPM) is based on a multi-stage distributed-amplifier design, which is capable of very wideband operation. This MPM is extremely durable and can last a decade or longer. Already more compact and lightweight than conventional designs, Glenn’s patented technique offers further size reduction by eliminating the need for either a traveling-wave tube amplifier or its accompanying kV-class electronic power conditioner. The performance of this MPM is exceptional, with much higher cut-off frequency and maximum frequency of oscillation than metal-semiconductor field-effect transistors offer, and the distributed amplifier’s wide bandwidth also results in much faster pulse rise times. Finally, Glenn’s design allows the module to operate in both pulsed and continuous wave modes, so it can single-handedly drive exceptional performance for radar, navigation, and communications.

Posted in: Briefs, Electronics, Electronics & Computers, Amplifiers, Navigation and guidance systems, Radar, Telecommunications systems, Semiconductors
Read More >>

AGM Thumbtack™ Valves for Small Enclosures: Smaller and Drier

Sensitive equipment such as optics and electronics can be damaged by humidity and condensation. Placing moisture-sensitive equipment inside a sealed enclosure reduces the risk of damage, but temperature and pressure variations can be problematic for a sealed enclosure if it does not have a pressure-relief mechanism.

Posted in: White Papers, Defense, Electronics, Electronics & Computers, Instrumentation
Read More >>

Tailor-made Computing Solutions Require Diverse I/O Functions

More than ever, users from industry and transportation expect the full system solution, but no longer want to have to worry about the cumbersome configuration and integration of individual hardware components and adapting the software. There is a very simple reason for this: the system supplier of their choice reduces the time to market and is also responsible for the entire system at the same time.

Posted in: White Papers, Communications, Electronics, Electronics & Computers, Electronics & Computers, Software
Read More >>

How to Manage Heat in Modular, COTS Enclosures

As components shrink, embedded systems have made their way into smaller and more mobile applications. Systems need to withstand more intense vibration, shock and EMI parameters and still function effectively. All of this affects the ruggedization of enclosures.

Posted in: White Papers, Defense, Electronics, Manufacturing & Prototyping
Read More >>

Using PXI to Build a High-Performance MEMS Microphone Testing System

The demand for increasing microphone signal quality from handheld mobile devices has led to the development of microphone signal processing technologies such as: HD audio, noise cancellation, active noise cancellation, beam forming, directional reception, stereo sound field reconstruction, and speech recognition. As well, devices incorporating multiple microphones are becoming more and more popular. Several newly released smart phones now integrate multiple MEMS (Micro Electrical-Mechanical System) microphones for improved background noise cancellation. All flagship smart phone models in introduced in 2015 featured three or more MEMS microphones to support HD audio, ambient noise cancellation, noise filtering, directional reception and speech recognition. Popularity of MEMS microphones is expected to grow.

Posted in: White Papers, Electronics, Data Acquisition, Sensors, Test & Measurement
Read More >>

Noise Analysis in Precision Analog Designs

There are articles explaining component-level noise analysis for amplifiers or for analog-to-digital converters (ADCs), but very few that explain how to budget noise or analyze noise from the system level. This paper reviews the basics of noise analysis in precision designs, relates those calculations to system-level specifications such as sensitivity, dynamic range, and resolution, and answers some of the big questions about low-noise design.

Posted in: White Papers, Electronic Components, Electronics, Electronics & Computers, Semiconductors & ICs
Read More >>

High-Bandwidth, Wide Field-of-View, Ultra-Sensitive, Radiation-Hardened, Short-Wave Infrared (SWIR) Receiver

Goddard Space Flight Center, Greenbelt, Maryland

Every LiDAR design faces the classic balancing act of signal versus noise. In order to maximize the range of a LiDAR, a receiver must amplify fractions of a micro-amp of photo current into a usable range for signal processing to occur, but without adding significant amounts of noise. Additionally, LiDAR receiver designs must exhibit very wide dynamic ranges because of the uncertainty in return signal amplitude. Meeting all these requirements in a small size, weight, and power form factor while keeping costs low is a major challenge.

Posted in: Briefs, Electronics, Electronics & Computers, Amplifiers, Lidar, Noise
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.