Electronic Component Testing: A Non-contact Sport

As electronic circuit boards and components get smaller and more powerful, inherent heat can cause significant damage. Infrared thermography can identify hot spots, allowing for improved thermal management and greater advances in circuit board design.

Posted in: White Papers, Electronics, Electronics & Computers, Cameras, Imaging


Linear Motors

Heidenhain (Schaumburg, IL) offers ETEL ILF and ILM series ironless high-speed linear motors for use in the semiconductor and electronics industry. The motors utilize an ironfree coil design for zero-attraction force between the carriage and the magnetic way. The ILF is a smallersized motor for very high dynamic and low-moving mass applications; the ILM is a more powerful version of the ILF, and has an option to be air-cooled to increase continuous force output. The ironless motors come in a variety of lengths and heights with different degrees of force, and share the same profile so that one is interchangeable with the other. The motors can reach speeds of up to 20 m/s and peak force of up to 2,500 N. They are designed for direct drive applications and offer no backlash, fewer parts, and require no maintenance. For Free Info Visit http://info.hotims.com/55588-304

Posted in: Products, Electronics, Manufacturing & Prototyping, Motion Control, Motors & Drives, Semiconductors & ICs


Reducing Interconnection Weight in Autosports

In Formula 1 and other autosports, weight reduction is critical to competitive advantage. A few grams saved here and a few more saved there can add up to significant savings. There is also a move toward high-density packaging of electronics parts. As the electronics content of cars increases, the natural drive is to miniaturize the package to gain maximum efficiency in the use of space.

Posted in: Articles, Electronic Components, Electronics, Composites, Fiber Optics


Magnetic Fluids Deliver Better Speaker Sound Quality

NASA’s liquid magnetization technology helps Sony increase sound amplitude while reducing distortion. In the early 1960s, NASA scientists were trying to move fuel into an engine without the benefit of gravity. A scientist at Lewis Research Center (now Glenn Research Center) came up with the idea to magnetize the liquid with extremely fine particles of iron oxide. That way, fuel could be drawn into the engine using magnetic force.

Posted in: Articles, Spinoff, Electronics, Joining & Assembly


Self-Powered Intelligent Keyboard Could Provide Additional Security

By analyzing such parameters as the force applied by key presses and the time interval between them, a new self-powered, non-mechanical, intelligent keyboard could provide a stronger layer of security for computer users. The self-powered device generates electricity when a user’s fingertips contact the multi-layer plastic materials that make up the device.

Posted in: News, Board-Level Electronics, Computers, Electronic Components, Electronics, Electronics & Computers, Power Management, Energy, Energy Harvesting, Semiconductors & ICs


NASA's Hot 100 Technologies: Electrical/Electronics

High-Field Superconducting Magnets This technology represents a significant improvement over commercial state-of-the-art magnets. These superconducting magnets are very versatile and can be used in a number of applications requiring magnetic fields at low temperature, such as in MRI machines, mass spectrometers, and particle accelerators.

Posted in: Articles, Techs for License, Electronics


2014 Create the Future Design: Electronics Category Winner

A Paradigm Shift for SMT Electronics: Micro-Coil Springs Interconnection for Ceramic and Plastic Grid Array Packaged Integrated Circuits Jim Hester and Mark Strickland NASA Marshall Space Flight Center Huntsville, ALMicro-coil springs (MCS) provide flexible electrical interconnections and allow significant movement in the x, y, and z axes to counteract the thermal expansion and dynamic forces between a microcircuit and a printed circuit board. Micro-coil springs are able to withstand harsh thermal and vibration environments significantly better than the current state of the art.

Posted in: Articles, Electronics


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.