Sound-Powered Medical Implants
Posted in News, Electronics, Power Supplies, Implants & Prosthetics, Patient Monitoring on Wednesday, 29 October 2014
Engineers at Stanford University are working on a new generation of medical devices that would be planted deep inside the body to monitor illness, deliver therapies and relieve pain. But in order to do so, they need to develop a way to provide electric power to those implants. Using wires or batteries to deliver power generally makes implants too big, too clumsy, or both, they say.
Researchers Develop Thinnest Electric Generator
Posted in News, Electronic Components, Electronics, Power Management, Metals, Sensors on Friday, 17 October 2014
Researchers from Columbia Engineering and the Georgia Institute of Technology made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide (MoS2), resulting in a unique electric generator and mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.

“This material—just a single layer of atoms—could be made as a wearable device, perhaps integrated into clothing, to convert energy from your body movement to electricity and power wearable sensors or medical devices, or perhaps supply enough energy to charge your cell phone in your pocket,” says James Hone, professor of mechanical engineering at Columbia and co-leader of the research.

Hone’s team placed thin flakes of MoS2 on flexible plastic substrates and determined how their crystal lattices were oriented using optical techniques. They then patterned metal electrodes onto the flakes. In research done at Georgia Tech, a group led by Zhong Lin Wang, Regents’ Professor in Georgia Tech’s School of Materials Science and Engineering, installed measurement electrodes on the samples provided by Hone’s group, then measured current flows as the samples were mechanically deformed. They monitored the conversion of mechanical to electrical energy, and observed voltage and current outputs.

Ultimately, Zhong Lin Wang notes, the research could lead to complete atomic-thick nanosystems that are self-powered by harvesting mechanical energy from the environment. This study also reveals the piezotronic effect in two-dimensional materials for the first time, which greatly expands the application of layered materials for human-machine interfacing, robotics, MEMS, and active flexible electronics.

Source Also: Learn more about a Piezoelectric Energy Harvesting Transducer System.
Ferroelectric Materials Could Revolutionize Data-Driven Devices
Posted in News, Board-Level Electronics, Computers, Electronic Components, Electronics, Power Management, Metals, Measuring Instruments on Friday, 17 October 2014
Electronic devices with unprecedented efficiency and data storage may someday run on ferroelectrics — remarkable materials that use built-in electric polarizations to read and write digital information, outperforming the magnets that are inside most popular data-driven technology. But ferroelectrics must first overcome a few key stumbling blocks, including a curious habit of "forgetting" stored data. Now, however, scientists at the U.S. Department of Energy's Brookhaven National Laboratory have discovered nanoscale asymmetries and charge preferences hidden within ferroelectrics that may explain their operational limits.
Tiny Wireless Sensing Device Alerts Users to Telltale Vapors Remotely
Posted in News, Wireless, Board-Level Electronics, Electronic Components, Electronics, Detectors, Sensors on Monday, 06 October 2014
A research team at the Georgia Tech Research Institute (GTRI) has developed a small electronic sensing device that can alert users wirelessly to the presence of chemical vapors in the atmosphere. The technology, which could be manufactured using familiar aerosol-jet printing techniques, is aimed at a variety of applications in military, commercial, environmental, healthcare and other areas.
Hypersensitive Graphene Sensor Could Detect Single Gas Molecule
Posted in News, Electronics, Sensors on Monday, 06 October 2014
University of Illinois at Chicago researchers have discovered a way to create a highly sensitive chemical sensor based on the crystalline flaws in graphene sheets. The imperfections have unique electronic properties that the researchers were able to exploit to increase sensitivity to absorbed gas molecules by 300 times.
Exploring Batteries for Micromachinery
Posted in News, Batteries, Electronic Components, Electronics on Friday, 03 October 2014
A team of researchers from the National Institute of Standards and Technology, Gaithersburg, MD, along with other institutions, has developed a toolset to allow them to explore the interior of microscopic, multi-layered batteries. This allows them insight into the batteries’ performance without destroying them—resulting in both a useful probe for scientists and a potential power source for micromachines.
Building Optical Chips that Can Be Tuned to Different Frequencies
Posted in News, Electronics on Thursday, 25 September 2014
Chips that could use light, instead of electricity, to move data would consume much less power—a growing concern as chips’ transistor counts rise. Of the three chief components of optical circuits—light emitters, modulators, and detectors—emitters are the toughest to build. One promising light source for optical chips is molybdenum disulfide (MoS2), which has excellent optical properties when deposited as a single, atom-thick layer, say researchers at Massachusetts Institute of Technology, Cambridge. Other experimental on-chip light emitters have more-complex three-dimensional geometries and use materials that are much more scarce, which would make them more difficult and costly to manufacture.