Prosthetic Arm Controlled by Imagining a Motion

Controlling a prosthetic arm by just imagining a motion may be possible through the work of Mexican scientists at the Centre for Research and Advanced Studies. First, it is necessary to know if there is a memory pattern in the amputee's brain in order to know how the arm moved. The pattern is then translated to instructions for the prosthesis.

Posted in: News, Electronics, Electronics & Computers, Implants & Prosthetics, Medical, Rehabilitation & Physical Therapy


New Laser Technology to Make 2020 Mission to Mars

NASA announced recently that laser technology originally developed at Los Alamos National Laboratory has been selected for its new Mars mission in 2020. SuperCam, which builds upon the successful capabilities demonstrated aboard the Curiosity Rover during NASA’s current Mars Mission, will allow researchers to sample rocks and other targets from a distance using a laser.

Posted in: News, Aerospace, Electronics, Electronics & Computers, Imaging, Lasers & Laser Systems, Photonics, Machinery & Automation, Detectors, Sensors, Measuring Instruments, Test & Measurement


New Circuits Can Function at Temperatures Above 650°F

Engineering researchers at the University of Arkansas have designed integrated circuits that can survive at temperatures greater than 350 degrees Celsius — or roughly 660 degrees Fahrenheit. Their work, funded by the National Science Foundation, will improve the functioning of processors, drivers, controllers and other analog and digital circuits used in power electronics, automobiles and aerospace equipment, all of which must perform at high and often extreme temperatures.

Posted in: News, Aerospace, Board-Level Electronics, Electronic Components, Electronics, Electronics & Computers, Power Management, Semiconductors & ICs, Automotive, Transportation


Engineers Hope to Create Electronics That Stretch at the Molecular Level

Nanoengineers at the University of California, San Diego are asking what might be possible if semiconductor materials were flexible and stretchable without sacrificing electronic function?

Posted in: News, Board-Level Electronics, Electronic Components, Electronics, Electronics & Computers, Materials, Semiconductors & ICs, Sensors


Agile Aperture Antenna Tested on Aircraft to Maintain Satellite Connection

Two of Georgia Tech's software-defined, electronically reconfigurable Agile Aperture Antennas (A3) were demonstrated in an aircraft during flight tests. The low-power devices can change beam directions in a thousandth of a second. One device, looking up, maintained a satellite data connection as the aircraft changed headings, banked and rolled, while the other antenna looked down to track electromagnetic emitters on the ground.

Posted in: News, Aerospace, Aviation, Communications, Wireless, Board-Level Electronics, Electronic Components, Electronics, Electronics & Computers, Power Management, Antennas, RF & Microwave Electronics, Software, Measuring Instruments, Test & Measurement


Nano-Pixels Promise Flexible, High-Res Displays

A new discovery will make it possible to create pixels just a few hundred nanometers across. The "nano-pixels" could pave the way for extremely high-resolution and low-energy thin, flexible displays for applications such as 'smart' glasses, synthetic retinas, and foldable screens.Oxford University scientists explored the link between the electrical and optical properties of phase change materials (materials that can change from an amorphous to a crystalline state). By sandwiching a seven=nanometer-thick layer of a phase change material (GST) between two layers of a transparent electrode, the team found that they could use a tiny current to 'draw' images within the sandwich "stack."Initially still images were created using an atomic force microscope, but the researchers went on to demonstrate that such tiny "stacks" can be turned into prototype pixel-like devices. These 'nano-pixels' – just 300 by 300 nanometers in size – can be electrically switched 'on and off' at will, creating the colored dots that would form the building blocks of an extremely high-resolution display technology.SourceAlso: Learn about Slot-Sampled Optical PPM Demodulation.

Posted in: News, Board-Level Electronics, Electronics, Electronics & Computers, Displays/Monitors/HMIs, Imaging, Materials, Nanotechnology, Semiconductors & ICs


'Sensing Skin' Detects Damage in Concrete Structures

Researchers from North Carolina State University and the University of Eastern Finland have developed new “sensing skin” technology designed to serve as an early warning system for concrete structures, allowing authorities to respond quickly to damage in everything from nuclear facilities to bridges.“The sensing skin could be used for a wide range of structures, but the impetus for the work was to help ensure the integrity of critical infrastructure such as nuclear waste storage facilities,” says Dr. Mohammad Pour-Ghaz, an assistant professor of civil, construction and environmental engineering at NC State and co-author of a paper describing the work.The skin is an electrically conductive coat of paint that can be applied to new or existing structures. The paint can incorporate any number of conductive materials, such as copper, making it relatively inexpensive.Electrodes are applied around the perimeter of a structure. The sensing skin is then painted onto the structure, over the electrodes. A computer program then runs a small current between two of the electrodes at a time, cycling through a number of possible electrode combinations.Every time the current runs between two electrodes, a computer monitors and records the electrical potential at all of the electrodes on the structure. This data is then used to calculate the sensing skin’s spatially distributed electrical conductivity. If the skin’s conductivity decreases, that means the structure has cracked or been otherwise damaged.The researchers have developed a suite of algorithms that allow them to both register damage and to determine where the damage has taken place.SourceAlso: Learn about Designing Composite Repairs and Retrofits for Infrastructure.

Posted in: News, Communications, Electronic Components, Electronics, Electronics & Computers, Materials, Semiconductors & ICs, Detectors, Sensors, Test & Measurement


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.