Electronics

'Sensing Skin' Detects Damage in Concrete Structures

Researchers from North Carolina State University and the University of Eastern Finland have developed new “sensing skin” technology designed to serve as an early warning system for concrete structures, allowing authorities to respond quickly to damage in everything from nuclear facilities to bridges.“The sensing skin could be used for a wide range of structures, but the impetus for the work was to help ensure the integrity of critical infrastructure such as nuclear waste storage facilities,” says Dr. Mohammad Pour-Ghaz, an assistant professor of civil, construction and environmental engineering at NC State and co-author of a paper describing the work.The skin is an electrically conductive coat of paint that can be applied to new or existing structures. The paint can incorporate any number of conductive materials, such as copper, making it relatively inexpensive.Electrodes are applied around the perimeter of a structure. The sensing skin is then painted onto the structure, over the electrodes. A computer program then runs a small current between two of the electrodes at a time, cycling through a number of possible electrode combinations.Every time the current runs between two electrodes, a computer monitors and records the electrical potential at all of the electrodes on the structure. This data is then used to calculate the sensing skin’s spatially distributed electrical conductivity. If the skin’s conductivity decreases, that means the structure has cracked or been otherwise damaged.The researchers have developed a suite of algorithms that allow them to both register damage and to determine where the damage has taken place.SourceAlso: Learn about Designing Composite Repairs and Retrofits for Infrastructure.

Posted in: News, Communications, Electronic Components, Electronics, Electronics & Computers, Materials, Semiconductors & ICs, Detectors, Sensors, Test & Measurement
Read More >>

Seamless Integrated Circuits Etched on Graphene

Researchers at UC Santa Barbara have introduced and modeled an integrated circuit design scheme in which transistors and interconnects are monolithically patterned seamlessly on a sheet of graphene, a 2-dimensional plane of carbon atoms. The demonstration offers possibilities for ultra energy-efficient, flexible, and transparent electronics.

Posted in: News, Electronics
Read More >>

Transient Electronics Dissolve When Triggered

An Iowa State research team led by Reza Montazami is developing "transient materials" and "transient electronics" that can quickly and completely melt away when a trigger is activated. The development could mean that one day you might be able to send out a signal to destroy a lost credit card.To demonstrate that potential, Montazami played a video showing a blue light-emitting diode mounted on a clear polymer composite base with the electrical leads embedded inside. After a drop of water, the base and wiring began to melt away. As the technology develops, Montazami sees more and more potential for the commercial application of transient materials. A medical device, once its job is done, could harmlessly melt away inside a person’s body. A military device could collect and send its data and then disappear, leaving no trace of an intelligence mission. An environmental sensor could collect climate information, then wash away in the rain. SourceAlso: Read other Electronics & Computers tech briefs.

Posted in: News, Defense, Electronic Components, Electronics, Electronics & Computers, Environmental Monitoring, Green Design & Manufacturing, LEDs, Lighting, Composites, Materials, Plastics, Medical, Semiconductors & ICs
Read More >>

Wireless Device Senses Chemical Vapors

A research team at the Georgia Tech Research Institute (GTRI) has developed a small electronic sensing device that can alert users wirelessly to the presence of chemical vapors in the atmosphere. The technology, which could be manufactured using familiar aerosol-jet printing techniques, is aimed at myriad applications in military, commercial, environmental, and healthcare areas.The current design integrates nanotechnology and radio-frequency identification (RFID) capabilities into a small working prototype. An array of sensors uses carbon nanotubes and other nanomaterials to detect specific chemicals, while an RFID integrated circuit informs users about the presence and concentrations of those vapors at a safe distance wirelessly.Because it is based on programmable digital technology, the RFID component can provide greater security, reliability and range – and much smaller size – than earlier sensor designs based on non-programmable analog technology. The present GTRI prototype is 10 centimeters square, but further designs are expected to squeeze a multiple-sensor array and an RFID chip into a one-millimeter-square device printable on paper or on flexible, durable substrates such as liquid crystal polymer.SourceAlso: Learn about Extended-Range Passive RFID and Sensor Tags.

Posted in: News, Communications, Wireless, Defense, Electronic Components, Electronics, Electronics & Computers, Environmental Monitoring, Green Design & Manufacturing, Manufacturing & Prototyping, Medical, Nanotechnology, RF & Microwave Electronics, Semiconductors & ICs, Detectors, Sensors
Read More >>

Vote for NASA Tech Briefs’ 19th Annual Readers’ Choice Awards

It’s that time of year when we ask NASA Tech Briefs readers to vote for the annual Readers’ Choice Product of the Year Awards.

Each month, our editors choose a Product of the Month that has exceptional technical merit and practical value for our design engineering readers.

Posted in: Articles, Products, Board-Level Electronics, Electronics, Electronics & Computers, Robotics, Computer-Aided Design (CAD)
Read More >>

2013 Create the Future Design: Electronics Category Winner

iPecs Pro Clinical Prosthetic Alignment and Assessment Tool

Michael Leydet, Richard Harrington, Alan Hutchenreuther, Vinay Bharadwaj, Chuck Krapf, Michael Link, Megan Toscas, Steven Hoover, Chris Nowak, Aaron Taszreak, Douglas Briggs, and Frank Fedel College Park Industries Inc., Warren, MI iPecs Pro

Historically, the fitting, adjustment, and alignment of prosthetic devices has been a highly skilled art relying on the training and experience of the prosthetist with input from the patient, but with limited access to objective quantifiable measures. The iPecs Pro software will have clinical real-time functional assessment features. This will guide the user through a series of subjective and objective questions and physical tests to determine the functional level of the patient. A report using the scale of the questions and the measured results from the physical tests will be produced for summation to the payer as support of the prostheses selection and prescription. After the sensor is used on each patient, the iPecs Pro will be removed and iPyramid (dummy unit or replacement adaptor) is placed into the prosthetic build as a placekeeper for future visits.

Posted in: Articles, Electronics, Electronic equipment, Oscilloscopes, Water quality, Prostheses and implants, Product development
Read More >>

2013 Create the Future Design Contest

The 2013 Create the Future Design Contest — sponsored by COMSOL, SAE International, and Tech Briefs Media Group (publishers of NASA Tech Briefs) — recognized innovation in product design in eight categories: Aerospace & Defense (new this year), Consumer Products, Electronics, Machinery & Equipment, Medical, Safety & Security, Sustainable Technologies, and Transportation & Automotive. On the following pages, you’ll meet the Grand Prize Winner, as well as the winners and Honorable Mentions in all eight categories. Congratulations to this year’s winners, and thanks to the more than 900 entrants from across the globe who submitted their design ideas. To view the entries online, visit www.createthefuturecontest.com

Posted in: Articles, Aerospace, Defense, Electronics, Green Design & Manufacturing, Medical, Automation, Transportation, Design processes
Read More >>

Electron Beam Writer Enables Microfabrication

Integrated electronics could activate prosthetics.

The new electron beam writer housed in the cleanroom facility at the Qualcomm Institute, previously the UCSD division of the California Institute of Telecommunications and Information Technology, is important for two major areas of research by Shadi Dayeh, PhD, an electrical and computer engineering professor. He is developing next-generation, nanoscale transistors for integrated electronics. At the same time, he is working to develop neural probes that can extract electrical signals from brain cells and transmit the information to a prosthetic device or computer. To achieve this level of signal extraction or manipulation requires tiny sensors spaced very closely together for the highest resolution and signal acquisition. Enter the new electron beam writer. (See Figure 1)

Posted in: Briefs, MDB, Briefs, Electronics, Electronics & Computers, Implants & Prosthetics, Medical, Patient Monitoring, Optics, Photonics, Semiconductors & ICs, Sensors, Semiconductor devices, Sensors and actuators, Nervous system, Prostheses and implants, Fabrication, Nanotechnology
Read More >>

Heart Pump with Behind-the-Ear Power Connector

One-third of patients with heart pumps develop infection at abdominal connection.

Cardiac surgeons and cardiologists at the University of Maryland Heart Center are part of a multi-center clinical trial evaluating the efficacy of powering heart pumps through a skull-based connector behind the ear. The pumps, called left ventricular assist devices (LVADs), support the heart’s main pumping chamber, the left ventricle. LVADs are implanted in the chest and powered with external batteries. Typically, these devices, which are used for patients with severe heart failure, are powered through an electrical cord connected at the abdomen, where potentially deadly infections can develop.

Posted in: Briefs, MDB, Briefs, Electronic Components, Electronics, Power Management, Power Supplies, Fluid Handling, Drug Delivery, Implants & Prosthetics, Medical, Patient Monitoring, Power Transmission, Connectors and terminals, Cardiovascular system, Medical equipment and supplies
Read More >>

Robotic Exoskeleton Vastly Improves Quality of Life

Worldwide an estimated 185 million people use a wheelchair daily. A company based in Auckland, New Zealand, has developed an innovative robotic technology that helps people with mobility impairment get back on their feet— the Rex Bionics robotic exoskeleton. Its integrated maxon motors help to ensure smooth limb movement.

Posted in: Features, MDB, Articles, Electronics, Power Management, Power Supplies, Manufacturing & Prototyping, Mechanical Components, Implants & Prosthetics, Medical, Orthopedics, Rehabilitation & Physical Therapy, Motion Control, Motors & Drives, Positioning Equipment, Power Transmission, Sensors, Kinematics, Medical equipment and supplies, Robotics, Electric motors, Biomechanics
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.