Power Management
Astronauts to Test Free-Flying Robotic 'Smart SPHERES'
Posted in Electronics & Computers, Power Management, PCs/Portable Computers, Cameras, Video, Visualization Software, Imaging, Sensors, Test & Measurement, Communications, Aerospace, Aviation, Machinery & Automation, Robotics, RF & Microwave Electronics, News on Thursday, 24 July 2014
Three bowling ball-size free-flying Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) have been flying inside the International Space Station since 2006. These satellites provide a test bed for development and research, each having its own power, propulsion, computer, navigation equipment, and physical and electrical connections for hardware and sensors for various experiments.

Aboard Orbital Sciences Corp.'s second contracted commercial resupply mission to the space station, which arrived to the orbital laboratory on July 16, NASA's Ames Research Center in Moffett Field, California, sent two Google prototype Project Tango smartphones that astronauts will attach to the SPHERES for technology demonstrations inside the space station.

By connecting a smartphone to the SPHERES, the technology becomes "Smart SPHERES, " a more "intelligent" free-flying robot with built-in cameras to take pictures and video, sensors to help conduct inspections, powerful computing units to make calculations and Wi-Fi connections to transfer data in real time to the computers aboard the space station and at mission control in Houston.

In a two-phase experiment, astronauts will manually use the smartphones to collect visual data using the integrated custom 3-D sensor to generate a full 3-D model of their environment. After the map and its coordinate system are developed, a second activity will involve the smartphones attached to the SPHERES, becoming the free-flying Smart SPHERES. As the free-flying robots move around the space station from waypoint to waypoint, utilizing the 3-D map, they will provide situational awareness to crewmembers inside the station and flight controllers in mission control. These experiments allow NASA to test vision-based navigation in a very small mobile product.

Source

Also: Learn about Automatic Lunar Rock Detection and Mapping.
Read More >>
Agile Aperture Antenna Tested on Aircraft to Maintain Satellite Connection
Posted in Electronics & Computers, Electronic Components, Board-Level Electronics, Electronics, Power Management, Software, Test & Measurement, Measuring Instruments, Communications, Wireless, Aerospace, Aviation, RF & Microwave Electronics, Antennas, News on Monday, 21 July 2014
Two of Georgia Tech's software-defined, electronically reconfigurable Agile Aperture Antennas (A3) were demonstrated in an aircraft during flight tests. The low-power devices can change beam directions in a thousandth of a second. One device, looking up, maintained a satellite data connection as the aircraft changed headings, banked and rolled, while the other antenna looked down to track electromagnetic emitters on the ground.
Read More >>
New Supercapacitor Could Make Structural Energy Storage A Reality
Posted in Electronics & Computers, Electronic Components, Power Management, Energy Storage, Energy, Semiconductors & ICs, News on Tuesday, 10 June 2014
Imagine a future in which our electrical gadgets are no longer limited by plugs and external power sources. This intriguing prospect is one of the reasons for the current interest in building the capacity to store electrical energy directly into a wide range of products, such as a laptop whose casing serves as its battery, or an electric car powered by energy stored in its chassis, or a home where the dry wall and siding store the electricity that runs the lights and appliances. It also makes the small, dull grey wafers that graduate student Andrew Westover and Assistant Professor of Mechanical Engineering Cary Pint have made in Vanderbilt's Nanomaterials and Energy Devices Laboratory far more important than their nondescript appearance suggests.
Read More >>
Wireless System Paves Way for 'Electroceutical' Medical Devices
Posted in Electronics & Computers, Electronic Components, Power Management, Implants & Prosthetics, Medical, Drug Delivery & Fluid Handling, Patient Monitoring, Communications, Wireless, RF & Microwave Electronics, Semiconductors & ICs, News on Tuesday, 27 May 2014
A wireless system uses the same power as a cell phone to safely transmit energy to chips the size of a grain of rice. The technology paves the way for new "electroceutical" devices to treat illness or alleviate pain.

The central discovery is an engineering breakthrough that creates a new type of wireless power transfer that can safely penetrate deep inside the body.

The technology could spawn a new generation of programmable microimplants – sensors to monitor vital functions deep inside the body; electrostimulators to change neural signals in the brain; and drug delivery systems to apply medicines directly to affected areas.

Source

Also: Visit Medical Design Briefs.
Read More >>
Big Ideas for Small Spaces
Posted in Electronics & Computers, Power Management, PCs/Portable Computers, Imaging, Displays/Monitors/HMIs, Software, Computer-Aided Design (CAD), Computer-Aided Engineering (CAE), Computer-Aided Manufacturing (CAM), Energy, Lighting, Test & Measurement, Monitoring, News on Monday, 28 April 2014
Over 24 hours from April 4 to 5, six top French design studios conceived and presented new product concepts for urban environments during the Small Spaces Design Hackathon, presented by Cut&Paste in partnership with Hewlett-Packard. In dense city neighborhoods, homes are small and office space is at a premium, so urban dwellers must be more creative in how they use their space. The design concepts were presented at Cyclone Le Studio as part of ZED, HP’s creative popup space.
Read More >>
Nanomaterial Extends Lithium-Sulfur Battery Lifespan
Posted in Batteries, Electronics & Computers, Power Management, Materials, Metals, Nanotechnology, News on Friday, 18 April 2014
A new nanomaterial could extend the lifespan of lithium-sulfur batteries, and therefore the driving range of electric vehicles.

Pacific Northwest National Laboratory researchers added the powder to the battery's cathode to capture problematic polysulfides that usually cause lithium-sulfur batteries to fail after a few charges.

Metal organic frameworks — also called MOFs — are crystal-like compounds made of metal clusters connected to organic molecules, or linkers. Together, the clusters and linkers assemble into porous 3-D structures.

During lab tests, a lithium-sulfur battery with PNNL's MOF cathode maintained 89 percent of its initial power capacity after 100 charge-and discharge cycles. Having shown the effectiveness of their MOF cathode, PNNL researchers now plan to further improve the cathode's mixture of materials so it can hold more energy.

Source

Also: Check out other Materials tech briefs.
Read More >>
Scientists Demonstrate Electrical Properties of Topological Insulators
Posted in Electronics & Computers, Electronic Components, Board-Level Electronics, Power Management, Semiconductors & ICs, News on Tuesday, 01 April 2014
Scientists at the U.S. Naval Research Laboratory (NRL) have demonstrated for the first time that one can electrically access the remarkable properties predicted for a topological insulator (TI). They used a ferromagnetic metal/tunnel barrier contact as a voltage probe to detect the spin polarization created in the topologically protected surface states when an unpolarized bias current is applied. This accomplishment identifies a successful electrical approach that provides direct access to the TI surface state spin system, significantly advances our fundamental understanding of this new quantum state, and enables utilization of the remarkable properties these materials offer for future technological applications.
Read More >>