Power Management

Researchers Develop Thinnest Electric Generator

Researchers from Columbia Engineering and the Georgia Institute of Technology made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide (MoS2), resulting in a unique electric generator and mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.“This material—just a single layer of atoms—could be made as a wearable device, perhaps integrated into clothing, to convert energy from your body movement to electricity and power wearable sensors or medical devices, or perhaps supply enough energy to charge your cell phone in your pocket,” says James Hone, professor of mechanical engineering at Columbia and co-leader of the research.Hone’s team placed thin flakes of MoS2 on flexible plastic substrates and determined how their crystal lattices were oriented using optical techniques. They then patterned metal electrodes onto the flakes. In research done at Georgia Tech, a group led by Zhong Lin Wang, Regents’ Professor in Georgia Tech’s School of Materials Science and Engineering, installed measurement electrodes on the samples provided by Hone’s group, then measured current flows as the samples were mechanically deformed. They monitored the conversion of mechanical to electrical energy, and observed voltage and current outputs.Ultimately, Zhong Lin Wang notes, the research could lead to complete atomic-thick nanosystems that are self-powered by harvesting mechanical energy from the environment. This study also reveals the piezotronic effect in two-dimensional materials for the first time, which greatly expands the application of layered materials for human-machine interfacing, robotics, MEMS, and active flexible electronics.Source Also: Learn more about a Piezoelectric Energy Harvesting Transducer System.

Posted in: News, Electronic Components, Electronics, Electronics & Computers, Power Management, Materials, Metals, Semiconductors & ICs, Sensors

Read More >>

No-Power Wi-Fi Connectivity Could Fuel Internet of Things

Imagine a world in which your wristwatch or other wearable device communicates directly with your online profiles, storing information about your daily activities where you can best access it, all without requiring batteries. Or, battery-free sensors embedded around your home that could track minute-by-minute temperature changes and send that information to your thermostat to help conserve energy.

Posted in: News, Products, Communications, Wireless, Electronics & Computers, Power Management, RF & Microwave Electronics, Sensors, Monitoring, Test & Measurement

Read More >>

Ferroelectric Materials Could Revolutionize Data-Driven Devices

Electronic devices with unprecedented efficiency and data storage may someday run on ferroelectrics — remarkable materials that use built-in electric polarizations to read and write digital information, outperforming the magnets that are inside most popular data-driven technology. But ferroelectrics must first overcome a few key stumbling blocks, including a curious habit of "forgetting" stored data. Now, however, scientists at the U.S. Department of Energy's Brookhaven National Laboratory have discovered nanoscale asymmetries and charge preferences hidden within ferroelectrics that may explain their operational limits.

Posted in: News, Board-Level Electronics, Computers, Electronic Components, Electronics, Electronics & Computers, Power Management, Materials, Metals, Measuring Instruments, Test & Measurement

Read More >>

Fast-Charging Batteries Have 20-Year Lifespan

Scientists at Nanyang Technology University (NTU) have developed ultra-fast charging batteries that can be recharged up to 70 percent in only two minutes. The new-generation batteries also have a long lifespan of over 20 years, more than 10 times compared to existing lithium-ion batteries.In the new NTU-developed battery, the traditional graphite used for the anode (negative pole) in lithium-ion batteries is replaced with a new gel material made from titanium dioxide. Titanium dioxide is an abundant, cheap and safe material found in soil. Naturally found in spherical shape, the NTU team has found a way to transform the titanium dioxide into tiny nanotubes, which is a thousand times thinner than the diameter of a human hair. The development speeds up the chemical reactions taking place in the new battery, allowing for superfast charging.  The breakthrough has a wide-ranging impact on all industries, especially for electric vehicles, where consumers are put off by the long recharge times and its limited battery life.SourceAlso: Learn about a Screening Technique for New Battery Chemistries.

Posted in: News, Batteries, Electronics & Computers, Power Management, Green Design & Manufacturing, Materials, Nanotechnology, Automotive, Transportation

Read More >>

Robots Restore Electricity After Power Outages

A team led by Nina Mahmoudian of Michigan Technological University has developed a tabletop model of a robot team that can bring power to places that need it the most.“If we can regain power in communication towers, then we can find the people we need to rescue,” says Mahmoudian, an assistant professor of mechanical engineering–engineering mechanics. “And the human rescuers can communicate with each other.”Unfortunately, cell towers are often located in hard-to-reach places, she says. “If we could deploy robots there, that would be the first step toward recovery.”The team has programmed robots to restore power in small electrical networks, linking up power cords and batteries to light a little lamp or set a flag to waving with a small electrical motor. The robots operate independently, choosing the shortest path and avoiding obstacles, just as you would want them to if they were hooking up an emergency power source to a cell tower.“Our robots can carry batteries, or possibly a photovoltaic system or a generator,” Mahmoudian said. The team is also working with Wayne Weaver, the Dave House Associate Professor of Electrical Engineering, to incorporate a power converter, since different systems and countries have different electrical requirements. SourceAlso: Learn about Locomotion of Amorphous Surface Robots.

Posted in: News, Communications, Wireless, Batteries, Electronics & Computers, Power Management, Energy, Energy Storage, Solar Power, Machinery & Automation, Robotics

Read More >>

'Solar Battery' Runs on Light and Air

Ohio State University researchers report that they have succeeded in combining a battery and a solar cell into one hybrid device.Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.The university will license the solar battery to industry, where Yiying Wu, professor of chemistry and biochemistry at Ohio State, says it will help tame the costs of renewable energy.“The state of the art is to use a solar panel to capture the light, and then use a cheap battery to store the energy,” Wu said. “We’ve integrated both functions into one device. Any time you can do that, you reduce cost.”During charging, light hits the mesh solar panel and creates electrons. Inside the battery, electrons are involved in the chemical decomposition of lithium peroxide into lithium ions and oxygen. The oxygen is released into the air, and the lithium ions are stored in the battery as lithium metal after capturing the electrons.When the battery discharges, it chemically consumes oxygen from the air to re-form the lithium peroxide. An iodide additive in the electrolyte acts as a “shuttle” that carries electrons, and transports them between the battery electrode and the mesh solar panel. The use of the additive represents a distinct approach on improving the battery performance and efficiency, the team said. The invention eliminates the loss of electricity that normally occurs when electrons have to travel between a solar cell and an external battery.SourceAlso: Learn about Full-Cell Evaluation for New Battery Chemistries.

Posted in: News, Batteries, Electronic Components, Electronics & Computers, Power Management, Energy, Energy Storage, Renewable Energy, Solar Power, Semiconductors & ICs

Read More >>

NASA Launch Pads Protected Against Lightning-Induced Power Surges

Circuit protection components Littelfuse Chicago, IL 773-628-1000 www.littelfuse.com Circuit protection is an essential part of any electrical or electronic product or system design. As the complexity of the product or system grows, circuit protection design becomes increasingly crucial. As circuitry is increasingly miniaturized, it’s more important than ever to protect it from damaging power surges. For engineers whose work is critical to the safety of a NASA mission, protecting the lives of crewmembers depends to no small extent on protecting delicate digital circuitry from hazards like electrostatic discharges and lightning-induced surges.

Posted in: Application Briefs, Electronics, Power Management

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.