Electrical/Electronics

Efficient Radiation Shielding Through Direct Metal Laser Sintering

Goddard Space Flight Center, Greenbelt, Maryland Functional and parametric degradation of microcircuits due to total ionizing dose (TID) often poses serious obstacles to deployment of critical state-of-the-art (SOTA) technologies in NASA missions. Moreover, because device dielectrics in which such degradation occurs vary from one fabrication lot to the next, these effects must be reevaluated on a lot-by-lot basis. Often, the most effective mitigation against TID degradation is the addition of radiation shielding to the electronics box. Unfortunately, shielding materials can add significant amounts of mass to a system, particularly when vulnerable parts require shielding over 4π steradians. One method for reducing mass is to apply spot shielding located only on the critical components that require it. Reduced box- and/or spacecraft-level shielding will necessitate more complex spot shielding to protect the component from the omnidirectional radiation environment.

Posted in: Briefs, Electronics & Computers

Read More >>

Using PXI to Build a High-Performance MEMS Microphone Testing System

The demand for increasing microphone signal quality from handheld mobile devices has led to the development of microphone signal processing technologies such as: HD audio, noise cancellation, active noise cancellation, beam forming, directional reception, stereo sound field reconstruction, and speech recognition. As well, devices incorporating multiple microphones are becoming more and more popular. Several newly released smart phones now integrate multiple MEMS (Micro Electrical-Mechanical System) microphones for improved background noise cancellation. All flagship smart phone models in introduced in 2015 featured three or more MEMS microphones to support HD audio, ambient noise cancellation, noise filtering, directional reception and speech recognition. Popularity of MEMS microphones is expected to grow.

Posted in: White Papers, Electronics, Data Acquisition, Sensors, Test & Measurement

Read More >>

Thermoelectric Cooling: How Does It Work? Why Should You Choose It?

There are many places one can go to get an outline on the pros and cons of different methods for enclosure cooling. Although we will briefly touch on them here, this is really an in-depth article on how to choose a Peltier (thermoelectric) air conditioner, once you have committed to the technology.

Posted in: White Papers, White Papers, Electronics & Computers

Read More >>

Beyond Telematics: IoT

This Bsquare whitepaper explains how manufacturers of commercial trucking and heavy construction equipment can move beyond simple telematics in order to increase asset uptime while reducing operating costs through comprehensive Internet of Things (IoT) technology.

Posted in: White Papers, Electronics & Computers

Read More >>

Polymer Nanofiber-Based Reversible Nano-Switch/Sensor Schottky Diode (nanoSSSD) Device

This microsensor has applications in biomedical devices, combustion engines, and detection/switching devices used in mass transit systems. John H. Glenn Research Center, Cleveland, Ohio NASA’s Glenn Research Center has developed a groundbreaking new microsensor that detects toxic gases and explosives in a variety of environments. Most devices can perform only a unidirectional sensing task, lacking a switching feature that would allow the device to return to baseline operation after the volatile species is removed or has dissipated. Glenn’s nano-Switch Sensor Schottky Diode (nanoSSSD) device consists of a thin film of graphene deposited on a specially prepared silicon wafer. Graphene’s two-dimensional properties make this technology both extremely sensitive to different gases and highly reliable in harsh, enclosed, or embedded conditions. The nanoSSSD can be connected to a visual and/or sound alarm that is autonomously triggered as the sensor detects a selected gas, and then is returned to its passive mode when the gas is no longer present. The innovation has applications in biomedical devices, combustion engines, and detection/switching devices used in mass transit systems.

Posted in: Briefs, Electronics & Computers

Read More >>

Method of Fault Detection and Rerouting

The technology can be used in wiring for aerospace, marine, automotive, industrial, and smart grid applications. John F. Kennedy Space Center, Florida NASA seeks partners interested in the commercial application of the In Situ Wire Damage Detection and Rerouting System (ISWDDRS). NASA’s Kennedy Space Center is soliciting licensees for this innovative technology. The ISWDDRS consists of a miniaturized inline connector containing self-monitoring electronics that use time domain reflectometry (TDR) to detect wire faults and determine fault type and fault location on powered electrical wiring. When a damaged or defective wire is identified, the system is capable of autonomously transferring electrical power and data connectivity to an alternate wire path. When used in conjunction with NASA’s wire constructions that use a conductive detection layer, the system is capable of detecting and limiting damage not only to the core conductor, but also to the insulation layer before the core conductor becomes compromised.

Posted in: Briefs, Electronics & Computers

Read More >>

Metal Oxide Vertical Graphene Hybrid Supercapacitors

Ames Research Center, Moffett Field, California NASA has developed a novel hybrid supercapacitor system utilizing vertical graphene as an electrode material grown directly on collector metals using a plasma enhanced chemical vapor de - position. Supercapacitors are an alternative to batteries for energy storage, offering high power density and rapid charging time. Nanomaterials such as carbon nanotubes and graphene offer high surface area and porosity to construct the electrodes. Vertical graphene grown directly on a collector metal substrate enables construction of a supercapacitor. The key to the hybrid supercapacitor technology is the growth of vertical graphene directly onto an inexpensive metal substrate without the use of bulk graphene, catalysts, or binders, resulting in increased power density. Adding the metal oxide or electrically conducting polymer to the vertical graphene adds redox (reduction and oxidation) capacitance, thus increasing the overall performance of the device.

Posted in: Briefs, Electronics & Computers

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.