Electrical/Electronics

NASA’s Pursuit of Power

Advances in batteries and propulsion enable innovations in both terrestrial and deep-space power applications. Advances in Capacitor Materials Electrochemical capacitors, or supercapacitors, have gained intense interest as an alternative to traditional energy storage devices. Applications for supercapacitors range from plug-in hybrid electric vehicles (PHEVs) to backup power sources. While the power density of supercapacitors surpasses that of batteries, commercially available batteries have a significantly higher specific energy density.

Posted in: Articles, Aerospace, Power Management, Propulsion

Read More >>

Rittal Hosts President Obama at Germany’s Hannover Fair

"We want to build on the spirit of innovation in the USA," said President Barack Obama in his opening speech at the Hannover Messe trade fair in Germany. Following the official opening, President Obama, accompanied by German Chancellor Angela Merkel, was given a tour of the Rittal Corporation booth. Rittal is the world’s largest enclosure manufacturer and a leader in thermal management of electrical, electronic, and IT equipment.

Posted in: Articles, Electronics & Computers, Government, Manufacturing & Prototyping

Read More >>

Next-Generation Electronics Innovations for NASA’s Space and Commercial Future

In 1964, NASA’s Electronics Research Center (ERC) opened in Massachusetts, serving to develop the space agency’s in-house expertise in electronics during the Apollo era. The center’s accomplishments include development of a high-frequency (30-GHz) oscillator, a miniaturized tunnel-diode transducer, and a transistor more tolerant of space radiation. Another development was in the area of holography. At the ERC, holography was “used for data storage, and has permitted a remarkable degree of data compression in the storing of star patterns.”

Posted in: Articles, Aerospace, Electronics

Read More >>

2015 Create the Future Design Contest: Electronics Category Winner

Real-Time Fiber Optic Sensing System Lance Richards NASA Armstrong Flight Research Center Edwards, CA A team at NASA Armstrong has developed fiber optic sensing system (FOSS) technology that represents a major breakthrough in high-speed operational monitoring and sensing. Driven by ultra-efficient algorithms, FOSS can be used to determine, in real time, a variety of critical parameters including strain, shape deformation, temperature, liquid level, and operational loads. This state-of-the-art sensor system delivers reliable measurements in the most demanding environments confronted by aerospace, automotive, and energy sectors. FOSS is ideal for monitoring the structural health of aircraft, buildings, and dams; improving the efficiency of turbines and industrial equipment; and detecting instabilities within tunnels and power plants.

Posted in: Articles, Aerospace, Electronics

Read More >>

Reducing Interconnection Weight in Autosports

In Formula 1 and other autosports, weight reduction is critical to competitive advantage. A few grams saved here and a few more saved there can add up to significant savings. There is also a move toward high-density packaging of electronics parts. As the electronics content of cars increases, the natural drive is to miniaturize the package to gain maximum efficiency in the use of space.

Posted in: Articles, Electronic Components, Electronics, Composites, Fiber Optics

Read More >>

Magnetic Fluids Deliver Better Speaker Sound Quality

NASA’s liquid magnetization technology helps Sony increase sound amplitude while reducing distortion. In the early 1960s, NASA scientists were trying to move fuel into an engine without the benefit of gravity. A scientist at Lewis Research Center (now Glenn Research Center) came up with the idea to magnetize the liquid with extremely fine particles of iron oxide. That way, fuel could be drawn into the engine using magnetic force.

Posted in: Articles, Spinoff, Electronics, Joining & Assembly

Read More >>

Self-Powered Intelligent Keyboard Could Provide Additional Security

By analyzing such parameters as the force applied by key presses and the time interval between them, a new self-powered, non-mechanical, intelligent keyboard could provide a stronger layer of security for computer users. The self-powered device generates electricity when a user’s fingertips contact the multi-layer plastic materials that make up the device.

Posted in: News, Board-Level Electronics, Computers, Electronic Components, Electronics, Electronics & Computers, Power Management, Energy, Energy Harvesting, Semiconductors & ICs

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.