Virtual Fabrication and Assembly Documentation

Over the years, the term “virtual” has become associated with many different domains. Virtual machines are now commonplace as a substitute for physical laptops or desktops, allowing for the emulation of computer systems. Of course, virtual reality is in the news daily as new headsets, apps, and games provide a substitute for images and sounds, allowing for the simulation of a three-dimensional environment. In the printed circuit board (PCB) space, some fabrication and assembly information such as artwork, drill, netlist, test, and component placement have been conveyed virtually to manufacturing for more than 30 years.

Posted in: Articles, Electronics & Computers

Recovering Metals from Electronic Waste

This process dissolves the major metals found in electronics, including materials that have been shredded, magnetically separated, or milled to a particle size less than one millimeter.

End-of-life electronic devices such as smartphones, computers, televisions, and other electronics contain significant amounts of valuable metals including base metals (zinc, tin, lead, nickel, and copper), precious metals (silver, gold, and palladium), and rare earth magnets (neodymium, yttrium, samarium). Some electronic scrap is currently landfilled or incinerated, and there is a need to develop more effective processes to capture these valuable metals along with keeping them out of the environment.

Posted in: Briefs, Electronics & Computers

Solder Bond Packaging for High-Voltage Pulsed Power Devices

This invention is a superior switching component for pulsed power applications.

The huge demand for switching components exceeding silicon's (Si) current density limitation of 200 A/cm2 has pushed the enhancement of alternative semiconductor materials such as silicon carbide (SiC), gallium nitride, and diamond. The enhanced material properties of SiC, such as high thermal conductivity, large critical field, wide bandgap, large elastic modulus, and high saturation velocity, make it a viable candidate for pulsed power systems. Using SiC would increase both current and power densities, improve dI/dt and dV/dt capabilities, reduce recovery time, and minimize switching losses in various power electronic systems. Furthermore, a significant reduction in the volume and weight of pulsed power systems can be realized by implementing SiC SGTOs, reducing the thermal management requirements of the pulsed power system.

Posted in: Briefs, Electronics & Computers

Chip-Sized Terahertz Modulator for Faster Data Transmission

This modulator is suitable for THz transmitters/receivers on a single chip.

Tufts University engineers have invented a chip-sized, high-speed modulator that operates at terahertz (THz) frequencies at room temperature and at low voltages without consuming DC power. The discovery could transmit data at significantly higher speeds than currently possible.

Posted in: Briefs, Electronics & Computers

A Modular Apparatus and Method for Attaching Multiple Devices

This technology improves the real-time monitoring of high-temperature or other harsh environments.

Posted in: Briefs, Electronics & Computers, Electronic equipment, Sensors and actuators, Fabrication, Silicon alloys, Protective structures

Wireless Electrical Device Using Open-Circuit Elements Having No Electrical Connections

This technology produces sensors for axial load force, linear displacement, rotation, strain, pressure, torque, and motion sensing.

NASA Langley Research Center has developed a wireless, connection-free, open-circuit technology that can be used for developing electrical devices such as sensors that need no physical contact with the properties being measured. At the core of the technology is the SansEC (Sans Electrical Connections) circuit, which is damage-resilient and environmentally friendly to manufacture and use. The technology uses a NASA award-winning magnetic field response measurement acquisition device to provide power to the device and, in the case of a sensor application, to acquire physical property measurements from them. This fundamental new approach using open circuits enables applications such as sensors for axial load force, linear displacement, rotation, strain, pressure, torque, and motion sensing, as well as unique designs such as for a wireless keypad or wireless rotational dial, or for energy storage.

Posted in: Briefs, Electronics & Computers, Architecture, Integrated circuits, Sensors and actuators, Wireless communication systems, Electric power, Magnetic materials

ISO 26262 & Automotive Electronics Development

Compliance standards, especially those that involve relatively new functional safety elements, will likely add additional requirements to the development process. But ISO 26262, in particular, will add more than new requirements to the product life cycle for automotive hardware-software systems. This Functional Safety standard will act as a framework impacting integrated requirements traceability, risk management, validation, verification, documentation and collaboration throughout the systems engineering “V” model life cycle process (see Figure). ISO 26262 will also require the qualification of tools used to create automotive systems. This paper examines the impact of the standard on the development process and support tool chains for automotive electronics.

Posted in: Briefs, TSP, Electronics & Computers, Information Sciences, Semiconductors & ICs, Software, Computer software and hardware, Life cycle analysis, Safety regulations and standards

PTC Heater Brings Greater Control for Hand-held Medical Devices and Disposables

Point of Care diagnostics devices, whether handheld or single-use, often require a brief application of tightly controlled heat. The disposable nature of these devices requires a low-cost component capable of delivering that heat reliably and safely. Heatron's new PTC heater solution uses a polymer-based heater technology that controls heat to within ±2°C of the target temperature, and reduces unit cost by eliminating sensors and applied controls.

Posted in: White Papers, Briefs, TSP, Electronics & Computers, Thermoelectrics, Medical, Medical equipment and supplies, Heating, ventilation, and air conditioning systems (HVAC), Polymers

MRAM Alternative Uses Less Energy than Conventional Chip

Purely electrical memory chips commonly used today are volatile and their state must be continuously refreshed, which requires a lot of energy. An alternative to these electrical memory chips is magnetic random access memory (MRAM), which saves data magnetically and does not require constant refreshing. They do, however, require relatively large electrical currents to write the data to memory, which reduces reliability.

Posted in: Briefs, Electronics & Computers, Computer software and hardware, Integrated circuits, Energy consumption

Reconfigurable Chaos-Based Microchips

Researchers at North Carolina State University have developed nonlinear chaos-based integrated circuits that enable computer chips to perform multiple functions with fewer transistors. These integrated circuits can be manufactured with off-the-shelf fabrication processes, and could lead to novel computer architectures that do more with less circuitry and fewer transistors.

Posted in: Briefs, Electronics & Computers, Architecture, Integrated circuits, Transistors, Fabrication

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.