Electronics & Computers

Ferroelectric Materials Could Revolutionize Data-Driven Devices

Electronic devices with unprecedented efficiency and data storage may someday run on ferroelectrics — remarkable materials that use built-in electric polarizations to read and write digital information, outperforming the magnets that are inside most popular data-driven technology. But ferroelectrics must first overcome a few key stumbling blocks, including a curious habit of "forgetting" stored data. Now, however, scientists at the U.S. Department of Energy's Brookhaven National Laboratory have discovered nanoscale asymmetries and charge preferences hidden within ferroelectrics that may explain their operational limits.

Posted in: Electronics & Computers, Electronic Components, Board-Level Electronics, Electronics, Power Management, Computers, Materials, Metals, Test & Measurement, Measuring Instruments, News

Read More >>

Automated Imaging System Analyzes Underground Root Systems

Researchers from the Georgia Institute of Technology and Penn State University have developed an automated imaging technique for measuring and analyzing the root systems of mature plants. The technique, believed to be the first of its kind, uses advanced computer technology to analyze photographs taken of root systems in the field. The imaging and software are designed to give scientists the statistical information they need to evaluate crop improvement efforts.“We’ve produced an imaging system to evaluate the root systems of plants in field conditions,” said Alexander Bucksch, a postdoctoral fellow in the Georgia Tech School of Biology and School of Interactive Computing. “We can measure entire root systems for thousands of plants to give geneticists the information they need to search for genes with the best characteristics.”Imaging of root systems has, until now, largely been done in the laboratory, using seedlings grown in small pots and containers. Such studies provide information on the early stages of development, and do not directly quantify the effects of realistic growing conditions or field variations in water, soil, or nutrient levels.The technique developed by Georgia Tech and Penn State researchers uses digital photography to provide a detailed image of roots from mature plants in the field. Individual plants to be studied are dug up and their root systems washed clean of soil. The roots are then photographed against a black background using a standard digital camera pointed down from a tripod. A white fabric tent surrounding the camera system provides consistent lighting.The resulting images are then uploaded to a server running software that analyzes the root systems for more than 30 different parameters, including the diameter of tap roots, root density, the angles of brace roots, and detailed measures of lateral roots.SourceAlso: Learn about Strobing to Enhance Display Legibility.

Posted in: Electronics & Computers, Cameras, Imaging, Software, Test & Measurement, Measuring Instruments, News

Read More >>

Fast-Charging Batteries Have 20-Year Lifespan

Scientists at Nanyang Technology University (NTU) have developed ultra-fast charging batteries that can be recharged up to 70 percent in only two minutes. The new-generation batteries also have a long lifespan of over 20 years, more than 10 times compared to existing lithium-ion batteries.In the new NTU-developed battery, the traditional graphite used for the anode (negative pole) in lithium-ion batteries is replaced with a new gel material made from titanium dioxide. Titanium dioxide is an abundant, cheap and safe material found in soil. Naturally found in spherical shape, the NTU team has found a way to transform the titanium dioxide into tiny nanotubes, which is a thousand times thinner than the diameter of a human hair. The development speeds up the chemical reactions taking place in the new battery, allowing for superfast charging.  The breakthrough has a wide-ranging impact on all industries, especially for electric vehicles, where consumers are put off by the long recharge times and its limited battery life.SourceAlso: Learn about a Screening Technique for New Battery Chemistries.

Posted in: Batteries, Electronics & Computers, Power Management, Green Design & Manufacturing, Materials, Transportation, Automotive, Nanotechnology, News

Read More >>

Robots Restore Electricity After Power Outages

A team led by Nina Mahmoudian of Michigan Technological University has developed a tabletop model of a robot team that can bring power to places that need it the most.“If we can regain power in communication towers, then we can find the people we need to rescue,” says Mahmoudian, an assistant professor of mechanical engineering–engineering mechanics. “And the human rescuers can communicate with each other.”Unfortunately, cell towers are often located in hard-to-reach places, she says. “If we could deploy robots there, that would be the first step toward recovery.”The team has programmed robots to restore power in small electrical networks, linking up power cords and batteries to light a little lamp or set a flag to waving with a small electrical motor. The robots operate independently, choosing the shortest path and avoiding obstacles, just as you would want them to if they were hooking up an emergency power source to a cell tower.“Our robots can carry batteries, or possibly a photovoltaic system or a generator,” Mahmoudian said. The team is also working with Wayne Weaver, the Dave House Associate Professor of Electrical Engineering, to incorporate a power converter, since different systems and countries have different electrical requirements. SourceAlso: Learn about Locomotion of Amorphous Surface Robots.

Posted in: Batteries, Electronics & Computers, Power Management, Energy Storage, Solar Power, Energy, Communications, Wireless, Machinery & Automation, Robotics, News

Read More >>

'Solar Battery' Runs on Light and Air

Ohio State University researchers report that they have succeeded in combining a battery and a solar cell into one hybrid device.Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.The university will license the solar battery to industry, where Yiying Wu, professor of chemistry and biochemistry at Ohio State, says it will help tame the costs of renewable energy.“The state of the art is to use a solar panel to capture the light, and then use a cheap battery to store the energy,” Wu said. “We’ve integrated both functions into one device. Any time you can do that, you reduce cost.”During charging, light hits the mesh solar panel and creates electrons. Inside the battery, electrons are involved in the chemical decomposition of lithium peroxide into lithium ions and oxygen. The oxygen is released into the air, and the lithium ions are stored in the battery as lithium metal after capturing the electrons.When the battery discharges, it chemically consumes oxygen from the air to re-form the lithium peroxide. An iodide additive in the electrolyte acts as a “shuttle” that carries electrons, and transports them between the battery electrode and the mesh solar panel. The use of the additive represents a distinct approach on improving the battery performance and efficiency, the team said. The invention eliminates the loss of electricity that normally occurs when electrons have to travel between a solar cell and an external battery.SourceAlso: Learn about Full-Cell Evaluation for New Battery Chemistries.

Posted in: Batteries, Electronics & Computers, Electronic Components, Power Management, Energy Storage, Solar Power, Renewable Energy, Energy, Semiconductors & ICs, News

Read More >>

Prosthetic Hands Give Patients A New Feel For Life

The human hand is a biomechanical marvel, but our hands are easy to take for granted because we depend on them all day long. People without all or part of their hands, however, know full well the value of what is missing as they struggle to perform even simple, everyday tasks.

Posted in: Electronics & Computers, White Papers

Read More >>

Determining an Effective Analog Sampling Rate

Q: How often should my equipment make measurements? A: This question often arises when people draft plans to automatically measure a physical quantity such as temperature, pressure, acidity, liquid level, and so on. You can approach this problem in several ways, from an educated guess to a mathematical analysis of your system. The examples that follow use temperature measurements because people measure temperature more than any other physical characteristic.

Posted in: Electronics & Computers, White Papers

Read More >>

White Papers

Spherical Plain Bearing
Sponsored by AST Bearings
Troubleshooting EMI in Embedded Designs
Sponsored by Rohde and Schwarz A and D
Manager’s Guide to Productivity Gains With Multiphysics Simulation
Sponsored by COMSOL
Reliability Testing of GORE® Protective Vents in LED Luminaires
Sponsored by Gore
Oscilloscope Fundamentals
Sponsored by Rohde and Schwarz A and D
PICO xMOD Data Sheet
Sponsored by Nordson EFD

White Papers Sponsored By: