Electrical/Electronics

Key Considerations for Integrating Wireless Technology in Medical Devices

Significant opportunities exist to incorporate wireless technology into medical devices. Wireless technology increases the effectiveness of countless every day functions. While some simply are about the convenience factor, like being able to quickly transmit patient records from one hospital to another via email, others have the power to be lifesaving. Medical device manufacturers know that there is significant opportunity to incorporate wireless technology into medical devices. However, design engineers who are extremely knowledgeable about the design of medical devices face a number of challenges in marrying off-the-shelf wireless chipsets with proprietary medical devices in development.

Posted in: Electronics, Manufacturing & Prototyping, Bio-Medical, Briefs, Briefs, Electronic Components, Electronics

Read More >>

Self-Charging Power Cell for Small Devices

A hybrid power cell uses a new technique for electrical charge conversion and storage. Scientists at Georgia Tech say that they have developed a new self-charging power cell technology that directly converts mechanical energy to chemical energy. Then, the power is stored until it is needed to generate electricity. This hybrid generator- storage cell utilizes mechanical energy more efficiently than systems using separate generators and batteries, they say.

Posted in: Electronics, Bio-Medical, Briefs, Briefs, Batteries, Electronic Components, Power Supplies

Read More >>

Lithium Batteries for Medical Applications

Recent advances in lithium technology have increased the variety of commercially available batteries. The element lithium possesses fundamental properties that make it ideal for use as the anode in both primary and rechargeable batteries. Vendors have paired the popular lithium anode with a variety of cathode and electrolyte materials, resulting in the wide choice of different chemistries available today. This article discusses the types of primary lithium batteries commonly used for medical applications and introduces a new type based on recent innovations in materials and manufacturing processes. Information about the basic properties, advantages, and disadvantages are provided for each battery type.

Posted in: Electronics, Manufacturing & Prototyping, Bio-Medical, Briefs, Briefs, Batteries

Read More >>

'Nanoflowers' for Energy Storage and Solar Cells

North Carolina State University researchers have created flower-like structures out of germanium sulfide (GeS) – a semiconductor material – that have extremely thin petals with an enormous surface area. The GeS flowers hold promise for next-generation energy storage devices and solar cells.

Posted in: News, News, Batteries, Energy Storage, Renewable Energy, Solar Power

Read More >>

Hybrid and Electric Vehicle Test System

SAKOR Technologies, Inc. (Okemos, MI) designed and installed a complete turnkey Hybrid and Electric Vehicle Test System for UQM Technologies, Inc. (Longmont, CO), a manufacturer of high-efficiency electric propulsion systems. UQM will use the system to test inverters and traction motors for use in hybrid and electric vehicles for the automotive, commercial truck, bus, and military markets.

Posted in: Products, Batteries, Electronics, Power Management, Power Supplies, Energy Efficiency

Read More >>

Harnessing the Power of Spinach

Vanderbilt University researches have developed a way to combine Photosystem 1 (PS1), the photosynthetic protein that converts light into electrochemical energy in spinach with silicon (the material used in solar cells), in a fashion that produces substantially more electrical current than has been reported by previous biohybrid solar cells.

Posted in: News, News, Electronics, Energy Harvesting, Renewable Energy, Solar Power

Read More >>

Starting Point for Overcoming Barrier to Fusion Power

The accuracy of a new model for predicting the size of a key barrier to fusion power, which was developed by physicist Robert Goldston of the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), has been confirmed. Goldston’s model predicts the width of what physicists call the “scrape-off layer” in tokamaks, the most widely used fusion facilities.

Posted in: News, News, Power Management

Read More >>