Electronics & Computers

New Circuits Can Function at Temperatures Above 650°F

Engineering researchers at the University of Arkansas have designed integrated circuits that can survive at temperatures greater than 350 degrees Celsius — or roughly 660 degrees Fahrenheit. Their work, funded by the National Science Foundation, will improve the functioning of processors, drivers, controllers and other analog and digital circuits used in power electronics, automobiles and aerospace equipment, all of which must perform at high and often extreme temperatures.

Posted in: Electronics & Computers, Electronic Components, Board-Level Electronics, Electronics, Power Management, Aerospace, Transportation, Automotive, Semiconductors & ICs, News

Read More >>

Engineers Hope to Create Electronics That Stretch at the Molecular Level

Nanoengineers at the University of California, San Diego are asking what might be possible if semiconductor materials were flexible and stretchable without sacrificing electronic function?

Posted in: Electronics & Computers, Electronic Components, Board-Level Electronics, Electronics, Materials, Sensors, Semiconductors & ICs, News

Read More >>

COVE: A CubeSat Payload Processor

This processor is a reconfigurable FPGA-based electronics payload for advanced data processing applications. NASA’s Jet Propulsion Laboratory, Pasadena, California The COVE (CubeSat Onboard processing Validation Experiment) Payload Processor is JPL’s first on-orbit demonstration with the Xilinx Virtex-5 FPGA (field-programmable gate array). The electronics payload is designed to provide a platform for advanced data processing applications while conforming to CubeSat specifications. Measuring 9 × 9.5 × 2 cm, COVE carries the new radiation-hardened Virtex-5 FPGA (V5QV), magnetoresistive RAM (MRAM), and phase-change memory. All data access to/from the payload is facilitated through a shared memory interface via a direct serial peripheral interface (SPI). Multiple configuration options enable COVE to be reconfigured in flight with new FPGA firmware.

Posted in: Electronics & Computers, Briefs

Read More >>

Dynamic Range Enhancement of High-Speed Data Acquisition Systems

Reversible non-linear amplitude compression is used. John H. Glenn Research Center, Cleveland, Ohio The innovation is a technique to overcome hardware limitations of common high-speed data acquisition systems in order to be able to measure electronic signals with high dynamic range, wide bandwidth, and high frequency.

Posted in: Electronics & Computers, Briefs

Read More >>

HALT Technique to Predict the Reliability of Solder Joints in a Shorter Duration

This methodology can reduce product development cycle time for improvements to packaging design qualification. NASA’s Jet Propulsion Laboratory, Pasadena, California The Highly Accelerated Life Testing (HALT) process subjects test articles to accelerated combined environments of thermal, dynamic, voltage, and current to find weak links in a given product design. The technique assesses fatigue reliability of electronic packaging designs used for long-duration deep space missions by testing using a wide temperature range (–150 to +125 °C), and dynamic acceleration range of up to 50g. HALT testing uses repetitive, multiple-axis vibration combined with thermal cycling on test articles to rapidly precipitate workmanship defects, manufacturing defects, and thermal cycling-related weak links in the design. This greatly reduces the product development time by rapidly finding problems and qualifying the packaging design quickly. Test vehicles were built using advanced electronic package designs using the surface mount technology process.

Posted in: Electronics & Computers, Briefs

Read More >>

GaN Schottky Diode-Based Frequency Multiplier

New GaN fabrication process has been applied to the design fabrication and tests of frequency doublers and triplers. NASA’s Jet Propulsion Laboratory, Pasadena, California State-of-the-art GaAs Schottky diode technology, which is being used for local oscillators (LOs) in heterodyne receivers and transmitters for radar applications, has limitations in terms of power-handling capabilities. That makes it difficult to generate necessary LO power to drive multi-pixel heterodyne receivers beyond 500 GHz, and to extend the operation frequency of single-pixel receivers beyond 2 THz up to 4.7 THz (63 μm OI line).

Posted in: Electronics & Computers, Briefs

Read More >>

Drive On – E-Bikes Shift into High Gear

If the five childhood friends and co-founders of electric bicycle developer FAZUA GmbH in Munich, Germany have their way, Europe’s fast-growing e-bike market soon will shift into an even higher gear.

Posted in: Electronics & Computers, White Papers

Read More >>