Electronics & Computers

Use of Highly Integrated Components in the Design of Small Gasoline Engine Controllers

Both the vehicle and power-tool small-engine markets can benefit from this circuit topology. As small gasoline engines evolve to use more sophisticated electronic engine controls, new challenges will face the smallengine manufacturers, including constraints in size and cost, as well as having to meet new emission and fuel efficiency standards driven by recent legislation. The rapid miniaturization of electronic components, as a side benefit of the smartphone and tablet market explosion, will help manufacturers meet these challenges, but new system and circuit topologies will also be required.

Posted in: Electronics & Computers, Briefs

Read More >>

Fabrication Methods for Adaptive Deformable Mirrors

Two methods are presented. Previously, it was difficult to fabricate deformable mirrors made by piezoelectric actuators. This is because numerous actuators need to be precisely assembled to control the surface shape of the mirror. Two approaches have been developed. Both approaches begin by depositing a stack of piezoelectric films and electrodes over a silicon wafer substrate. In the first approach, the silicon wafer is removed initially by plasma-based reactive ion etching (RIE), and non-plasma dry etching with xenon difluoride (XeF2). In the second approach, the actuator film stack is immersed in a liquid such as deionized water. The adhesion between the actuator film stack and the substrate is relatively weak. Simply by seeping liquid between the film and the substrate, the actuator film stack is gently released from the substrate.

Posted in: Manufacturing & Prototyping, Electronics & Computers, Briefs

Read More >>

Compact Focal Plane Assembly for Planetary Science

New fabrication methods were incorporated to produce an ultra-lightweight and compact radiometer. A compact radiometric focal plane assembly (FPA) has been designed in which the filters are individually co-registered over compact thermopile pixels. This allows for construction of an ultralightweight and compact radiometric instrument. The FPA also incorporates micromachined baffles in order to mitigate crosstalk and low-pass filter windows in order to eliminate high-frequency radiation.

Posted in: Electronics & Computers, Briefs

Read More >>

Fabrication Method for LOBSTER-Eye Optics in Silicon

The major advantages are the potential for higher x-ray throughout and lower cost over the slumped micropore glass plates. Soft x-ray optics can use narrow slots to direct x-rays into a desirable pattern on a focal plane. While square-pack, square-pore, slumped optics exist for this purpose, they are costly. Silicon (Si) is being examined as a possible low-cost replacement. A fabrication method was developed for narrow slots in Si demonstrating the feasibility of stacked slot optics to replace micropores.

Posted in: Electronics & Computers, Briefs

Read More >>

Wireless Integrated Microelectronic Vacuum Sensor System

This system is applicable to facility monitoring applications, as well as cryogenic fluid manufacture and transport. NASA Stennis Space Center’s (SSC’s) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer.

Posted in: Electronics & Computers, Briefs

Read More >>

An All-Solid-State, Room-Temperature, Heterodyne Receiver for Atmospheric Spectroscopy at 1.2 THz

This receiver enables terahertz heterodyne spectroscopy of outer planet atmospheres without cryogenic cooling. Heterodyne receivers at submillimeter wavelengths have played a major role in astrophysics as well as Earth and planetary remote sensing. All-solid-state heterodyne receivers using both MMIC (monolithic microwave integrated circuit) Schottky-diode-based LO (local oscillator) sources and mixers are uniquely suited for long-term planetary missions or Earth climate monitoring missions as they can operate for decades without the need for any active cryogenic cooling. However, the main concern in using Schottky-diode-based mixers at frequencies beyond 1 THz has been the lack of enough LO power to drive the devices because 1 to 3 mW are required to properly pump Schottky diode mixers. Recent progress in HEMT- (high-electron-mobility-transistor) based power amplifier technology, with output power levels in excess of 1 W recently demonstrated at W-band, as well as advances in MMIC Schottky diode circuit technology, have led to measured output powers up to 1.4 mW at 0.9 THz.

Posted in: Electronics & Computers, Briefs

Read More >>

Stacked Transformer for Driver Gain and Receive Signal Splitting

In a high-speed signal transmission system that uses transformer coupling, there is a need to provide increased transmitted signal strength without adding active components. This invention uses additional transformers to achieve the needed gain. The prior art uses stronger drivers (which require an IC redesign and a higher power supply voltage), or the addition of another active component (which can decrease reliability, increase power consumption, reduce the beneficial effect of serializer/deserializer preemphasis or deemphasis, and/or interfere with fault containment mechanisms), or uses a different transformer winding ratio (which requires redesign of the transformer and may not be feasible with high-speed signals that require a 1:1 winding ratio).

Posted in: Electronics & Computers, Briefs

Read More >>