Electrical/Electronics

Optimizing Performance with Technology Embedded Apparel

Intercomp USA’s latest e-book delves into the smart garment market and how sensors are crucial for making garments smart. More importantly, Intercomp reveals an exciting new technology called tailored fiber placement (TFP), available through its partnership with LayStitch. TFP promises to help with smart garment production and will enable aerospace, automotive and other equipment manufacturers to produce parts that are lighter, stronger and less expensive. Click here to download your FREE copy today or visit intercomp.com to learn more.

Posted in: White Papers, Aeronautics, Electronics & Computers, Energy, Medical

Read More >>

2015 Create the Future Design Contest: Electronics Category Winner

Real-Time Fiber Optic Sensing System Lance Richards NASA Armstrong Flight Research Center Edwards, CA A team at NASA Armstrong has developed fiber optic sensing system (FOSS) technology that represents a major breakthrough in high-speed operational monitoring and sensing. Driven by ultra-efficient algorithms, FOSS can be used to determine, in real time, a variety of critical parameters including strain, shape deformation, temperature, liquid level, and operational loads. This state-of-the-art sensor system delivers reliable measurements in the most demanding environments confronted by aerospace, automotive, and energy sectors. FOSS is ideal for monitoring the structural health of aircraft, buildings, and dams; improving the efficiency of turbines and industrial equipment; and detecting instabilities within tunnels and power plants.

Posted in: Articles, Aerospace, Electronics

Read More >>

Fault Recovery for Multi-Phase Power Converters

This method has application in power converters for thin film deposition to prevent loss of expensive silicon wafer products. John H. Glenn Research Center, Cleveland, Ohio A fault recovery method for multiphase power converters enables delivery of reduced output power of as much as 66% of normal power in the event of a shorted power switch component. The need for redundant power converters in conventional multi-phase space power systems is reduced, if not eliminated. Fault recovery includes detecting a shorted power switch fault, providing short circuit current protection, providing isolation of the shorted power switch, and reconfiguring the remaining undamaged power switches.

Posted in: Briefs, TSP, Electronics & Computers, Power Management

Read More >>

Isolated Bidirectional DC Converters for Distributed Battery Energy Applications

This development is applicable to electric propulsion systems of vehicles. John H. Glenn Research Center, Cleveland, Ohio Power systems are the core heartbeat of any advanced vehicle. Reliability and flexibility of these systems are of the highest priority. This innovation is a highly efficient and modular isolated bidirectional DC converter for battery energy applications that has been translated into high-priority NASA power system applications, demonstrating transferability, robustness, and scalability.

Posted in: Briefs, TSP, Electronics & Computers, Power Management

Read More >>

Device Accommodating Volume Expansion and Contraction for Water-Ice Phase Change Material Heat Sinks

This innovation enables the use of water as a phase change material for thermal energy storage. Lyndon B. Johnson Space Center, Houston, Texas This invention accommodates the volume expansion and contraction of water ice as it freezes and thaws, thus enabling the use of water as a phase change material (PCM) for thermal energy storage. Due to the relatively large volume expansion of water upon freezing, and the relatively large bulk modulus of elasticity of ice, it is imperative to accommodate the volume expansion in order to prevent rupture of the containment vessel. In addition to accommodating the volume expansion associated with the phase change from liquid water to solid ice, this invention is usable at temperatures as low as –150 °C, thus enabling the ice to be super-cooled for additional sensible thermal storage capacity. Finally, this invention operates independent of gravity, enabling its use in space applications.

Posted in: Briefs, TSP, Electronics & Computers, Power Management

Read More >>

High-Power, Solid-State Power Amplifier System

Marshall Space Flight Center, Alabama The purpose of the invention was to increase the operational power levels of solid-state power amplifiers using state-ofthe- art power amplifier design and combining methodology. Using 1-kW RF modules and proper RF combining techniques, a system was built that generated 16 kW of RF power for use in electric plasma propulsion. The 1-kW units were fault-protected against excessive power, excessive current, and high VSWR, since the RF power devices are extremely sensitive to variations in their operating conditions.

Posted in: Briefs, Electronics & Computers, Power Management

Read More >>

H2O/NaCl-Based Radio Frequency Power Load

Marshall Space Flight Center, Alabama The purpose of the invention was to increase the operational power levels of power loads as well as improve the overall reliability and safety of existing systems. Using water (H2O), table salt (NaCl) or some other form of salt, and a matching network, an RF power load can be built to absorb transmitted power levels in the 10s or 100s of kilowatts, where the water absorbs the power. The only byproduct is the barely detectable heating of the water bath.

Posted in: Briefs, Electronics & Computers, Power Management

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.