Energy

Self-Powered Intelligent Keyboard Could Provide Additional Security

By analyzing such parameters as the force applied by key presses and the time interval between them, a new self-powered, non-mechanical, intelligent keyboard could provide a stronger layer of security for computer users. The self-powered device generates electricity when a user’s fingertips contact the multi-layer plastic materials that make up the device.

Posted in: News, Board-Level Electronics, Computers, Electronic Components, Electronics, Power Management, Energy Harvesting

Read More >>

Public Lighting System Runs on Solar and Wind Energy

A researcher at the Barcelona College of Industrial Engineering, in collaboration with the company Eolgreen, has developed the first autonomous industrialized public lighting system that works with solar and wind energy. This system, developed after four years of research, is designed for inter-urban roads, motorways, urban parks, and other public areas. It is unique in the world, and reduces the cost by 20% compared with conventional public lighting systems. The prototype is 10 meters high and is fitted with a solar panel, a wind turbine, and a battery. The turbine runs at a speed of 10 to 200 rpm and has a maximum output of 400 watts. Work is being done on a second prototype generator that runs at a lower speed (10 to 60 rpm) and has a lower output (100 W). An electronic control system manages the flow of energy among the solar panel, the wind turbine, the battery, and the light. Source:

Posted in: News, Batteries, Renewable Energy, Solar Power, Wind Power

Read More >>

Zinc Oxide Materials Power Tiny Energy Harvesting Devices

Many types of smart devices are readily available and convenient to use. The goal now is to make wearable electronics that are flexible, sustainable, and powered by ambient renewable energy. This last goal inspired researchers to explore how the attractive physical features of zinc oxide (ZnO) materials could be used to tap into abundant mechanical energy sources to power micro devices. They discovered that inserting aluminum nitride insulating layers into ZnO-based energy harvesting devices led to a significant improvement of the devices’ performance. The group’s findings are expected to provide an effective approach for realizing “nanogenerators” for self-powered electronic systems such as portable communication devices, healthcare monitoring devices, environmental monitoring devices, and implantable medical devices. Source:

Posted in: News, Electronic Components, Energy Harvesting, Renewable Energy, Metals

Read More >>

Glass as Electrode Makes Batteries More Efficient

Today’s batteries provide a reliable power supply for our smartphones, electric cars and laptops, but are unable to keep up with the growing demands placed on them. Researchers have discovered a material that may have the potential to double battery capacity: vanadate-borate glass. The glass is being used as a cathode material, which is made of vanadium oxide (V2O5) and lithium-borate (LiBO2) precursors, and was coated with reduced graphite oxide (RGO) to enhance the electrode properties of the material. The vanadate-borate glass powder was used for battery cathodes, which were placed in prototypes for coin cell batteries to undergo numerous charge/discharge cycles. In tests, the glass electrodes demonstrated a vast improvement in these batteries’ capacity and energy density. Source:

Posted in: News, Batteries, Electronic Components, Energy Efficiency

Read More >>

Energy Harvesting Could Help Power Spacecraft of the Future

A consortium is working on a project to maximize energy harvesting on a spacecraft of the future. The initiative seeks to find energy-saving and -maximizing solutions to enable eco-friendly aircraft to stay in space for long periods of time without the need to return to Earth to re-fuel, or to avoid carrying vast amounts of heavy fuel on long-stay journeys.

Posted in: News, Aviation, Energy Efficiency, Energy Harvesting

Read More >>

Foldable Material Can Support Many Times its Weight

Researchers at Drexel University and Dalian University of Technology in China have chemically engineered a new, electrically conductive nanomaterial that is flexible enough to fold, but strong enough to support many times its own weight. They believe it can be used to improve electrical energy storage, water filtration, and radio frequency shielding in technology from portable electronics to coaxial cables.

Posted in: News, Energy Storage

Read More >>

Garnet Ceramics Could Be the Key to High-Energy Lithium Batteries

Scientists at the Department of Energy’s Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs. The ORNL-led team used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Posted in: News, Batteries, Electronic Components, Power Management, Energy Efficiency, Ceramics

Read More >>

White Papers

Troubleshooting EMI in Embedded Designs
Sponsored by Rohde and Schwarz A and D
Connectors Outperform Fardwiring for Manufacturers and Their Customers
Sponsored by Harting
Force and Torque Measurement Traceability
Sponsored by Morehouse
Tubing & Hose Buying Tips
Sponsored by Newage Industries
Analog Signal Conditioning for Accurate Measurements
Sponsored by Sealevel
The Final Step In Prototyping: Enhancing Your Metal Parts For Accelerated Speed To Market
Sponsored by Able Electropolishing

White Papers Sponsored By: