Energy

Ultra-Thin 3D Display Promises Greater Energy Efficiency

An ultra-thin LCD screen, developed by a group of researchers from the Hong Kong University of Science and Technology, holds three-dimensional images without a power source, making the display technology a compact, energy-efficient way to display visual information.In a traditional LCD, liquid crystal molecules are sandwiched between polarized glass plates. Electrodes pass current through the apparatus, influencing the orientation of the liquid crystals inside and manipulating the way they interact with the polarized light. The new displays ditch the electrodes, simultaneously making the screen thinner and decreasing its energy requirements. Once an image is uploaded to the screen via a flash of light, no power is required to keep it there. Because these so-called bi-stable displays draw power only when the image is changed, they are particularly advantageous in applications where a screen displays a static image for most of the time, such as e-book readers or battery status monitors for electronic devices. “Because the proposed LCD does not have any driving electronics, the fabrication is extremely simple. The bi-stable feature provides a low power consumption display that can store an image for several years,” said researcher Abhishek Srivastava.The researchers, however, went further than creating a simple LCD display; they engineered their screen to display images in 3D. SourceAlso: Learn about a Rapid Prototyping Lab (RPL) Generic Display Engine.

Posted in: News, Energy Efficiency, Displays/Monitors/HMIs

Read More >>

Robots Restore Electricity After Power Outages

A team led by Nina Mahmoudian of Michigan Technological University has developed a tabletop model of a robot team that can bring power to places that need it the most.“If we can regain power in communication towers, then we can find the people we need to rescue,” says Mahmoudian, an assistant professor of mechanical engineering–engineering mechanics. “And the human rescuers can communicate with each other.”Unfortunately, cell towers are often located in hard-to-reach places, she says. “If we could deploy robots there, that would be the first step toward recovery.”The team has programmed robots to restore power in small electrical networks, linking up power cords and batteries to light a little lamp or set a flag to waving with a small electrical motor. The robots operate independently, choosing the shortest path and avoiding obstacles, just as you would want them to if they were hooking up an emergency power source to a cell tower.“Our robots can carry batteries, or possibly a photovoltaic system or a generator,” Mahmoudian said. The team is also working with Wayne Weaver, the Dave House Associate Professor of Electrical Engineering, to incorporate a power converter, since different systems and countries have different electrical requirements. SourceAlso: Learn about Locomotion of Amorphous Surface Robots.

Posted in: News, Wireless, Batteries, Power Management, Energy Storage, Solar Power, Machinery & Automation, Robotics

Read More >>

'Solar Battery' Runs on Light and Air

Ohio State University researchers report that they have succeeded in combining a battery and a solar cell into one hybrid device.Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.The university will license the solar battery to industry, where Yiying Wu, professor of chemistry and biochemistry at Ohio State, says it will help tame the costs of renewable energy.“The state of the art is to use a solar panel to capture the light, and then use a cheap battery to store the energy,” Wu said. “We’ve integrated both functions into one device. Any time you can do that, you reduce cost.”During charging, light hits the mesh solar panel and creates electrons. Inside the battery, electrons are involved in the chemical decomposition of lithium peroxide into lithium ions and oxygen. The oxygen is released into the air, and the lithium ions are stored in the battery as lithium metal after capturing the electrons.When the battery discharges, it chemically consumes oxygen from the air to re-form the lithium peroxide. An iodide additive in the electrolyte acts as a “shuttle” that carries electrons, and transports them between the battery electrode and the mesh solar panel. The use of the additive represents a distinct approach on improving the battery performance and efficiency, the team said. The invention eliminates the loss of electricity that normally occurs when electrons have to travel between a solar cell and an external battery.SourceAlso: Learn about Full-Cell Evaluation for New Battery Chemistries.

Posted in: News, Batteries, Electronic Components, Power Management, Energy Storage, Renewable Energy, Solar Power

Read More >>

Engineers Prepare Battery Module Swapping Approach for Electric Cars

Imagine being able to switch out the batteries in electric cars just like you switch out batteries in a photo camera or flashlight. A team of engineers at the University of California, San Diego, are trying to accomplish just that, in partnership with a local San Diego engineering company.Rather than swapping out the whole battery, which is cumbersome and requires large, heavy equipment, engineers plan to swap out and recharge smaller units within the battery, known as modules.Swapping battery modules could also have far-reaching implications for mobile and decentralized electrical energy storage systems such as solar backup and portable generators. The technology can make energy storage more configurable, promote safety, simplify maintenance and eventually eliminate the use of fossil fuels for these applications.Engineers not only believe that their approach is viable, but also plan to prove it. They will embark on a cross-country trip with a car powered by the removable, rechargeable M-BEAM, or Modular Battery Exchange and Active Management, battery modules.  They plan to drive from coast to coast only taking breaks that are a few minutes long to swap out the modules that will be recharged in a chase vehicle. They believe they can drive from San Diego to the coast of South Carolina less than 60 hours — without going over the speed limit.SourceAlso: Learn about a Full-Cell Evaluation/Screening Technique for New Battery Chemistries.

Posted in: News, Batteries, Power Management, Renewable Energy, Solar Power

Read More >>

Researchers Create See-Through Solar Concentrator

A team of researchers at Michigan State University has developed a new type of solar concentrator that when placed over a window creates solar energy.The device is called a transparent luminescent solar concentrator and can be used on buildings, cell phones, and any other device that has a clear surface.And, according to Richard Lunt of MSU’s College of Engineering, the key word is “transparent.”The solar harvesting system uses small organic molecules developed by Lunt and his team to absorb specific nonvisible wavelengths of sunlight.The “glowing” infrared light is guided to the edge of the plastic where it is converted to electricity by thin strips of photovoltaic solar cells.“Because the materials do not absorb or emit light in the visible spectrum, they look exceptionally transparent to the human eye,” said Richard Lunt of MSU’s College of Engineering.SourceAlso: Learn about High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration.

Posted in: News, Renewable Energy, Solar Power, Plastics

Read More >>

Water Splitter Runs on AAA Battery

Scientists at Stanford University have developed a low-cost, emissions-free device that uses an ordinary AAA battery to produce hydrogen by water electrolysis.  The battery sends an electric current through two electrodes that split liquid water into hydrogen and oxygen gas. Unlike other water splitters that use precious-metal catalysts, the electrodes in the Stanford device are made of inexpensive and abundant nickel and iron.In addition to producing hydrogen, the novel water splitter could be used to make chlorine gas and sodium hydroxide, an important industrial chemical. Splitting water to make hydrogen requires no fossil fuels and emits no greenhouse gases. But scientists have yet to develop an affordable, active water splitter with catalysts capable of working at industrial scales."It's been a constant pursuit for decades to make low-cost electrocatalysts with high activity and long durability," said Stanford University Professor Hongjie Dai. "When we found out that a nickel-based catalyst is as effective as platinum, it came as a complete surprise."SourceAlso: Learn about a Proton Exchange Membrane Fuel Cell.

Posted in: News, Batteries, Power Management, Alternative Fuels, Metals

Read More >>

Researchers Develop Solar Technologies, Origami-Style

As a high school student at a study program in Japan, Brian Trease would fold wrappers from fast-food cheeseburgers into cranes. He loved discovering different origami techniques in library books.Today, Trease, a mechanical engineer at NASA’s Jet Propulsion Laboratory in Pasadena, California, thinks about how the principles of origami could be used for space-bound devices.Researchers say origami could be useful one day in utilizing space solar power for Earth-based purposes. Imagine an orbiting power plant that wirelessly beams power down to Earth using microwaves. Sending the solar arrays up to space would be easy, Trease said, because they could all be folded and packed into a single rocket launch, with "no astronaut assembly required."Panels used in space missions already incorporate simple folds, collapsing like a fan or an accordion. But Trease and colleagues are interested in using more intricate folds that simplify the overall mechanical structure and make for easier deployment.Last year, Zirbel and Trease collaborated with origami expert Robert Lang and BYU professor Larry Howell to develop a solar array that folds up to be 8.9 feet (2.7 meters) in diameter. Unfold it, and you’ve got a structure 82 feet (25 meters) across.SourceAlso: Learn about Origami-Inspired Folding of Thick, Rigid Panels.

Posted in: News, Energy Harvesting, Renewable Energy, Solar Power, Antennas

Read More >>

White Papers

Building a Test System for High-Speed Data Streaming Applications
Sponsored by ADLINK Technology
When Wire Feedthroughs Make Sense
Sponsored by Douglas Electrical Components
The Aerospace Industry Takes a Fresh Look at Its Wire Harness Design Approach
Sponsored by Mentor Graphics
Specialized Adhesives Withstand Thermal Cycling
Sponsored by Master Bond
Serial Fabrics Improve System Design
Sponsored by Pentek
How to Avoid Bearing Corrosion
Sponsored by Kaydon

White Papers Sponsored By: