Garnet Ceramics Could Be the Key to High-Energy Lithium Batteries

Scientists at the Department of Energy’s Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs. The ORNL-led team used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Posted in: News, Batteries, Electronic Components, Electronics & Computers, Power Management, Energy, Energy Efficiency, Ceramics, Materials, Semiconductors & ICs

New Coating Cools Buildings, Beams Away Heat

Stanford engineers have invented a revolutionary coating material that can help cool buildings, even on sunny days, by radiating heat away from the buildings and sending it directly into space.

Posted in: News, Energy, Energy Efficiency, Green Design & Manufacturing, Coatings & Adhesives, Materials

New Compounds Developed to Manufacture Tunable OLED Devices

Researchers have developed new organic compounds characterized by higher modularity, stability, and efficiency that could be applicable for use in electronics or lighting. A proof-of-concept project has begun to verify that the compounds have the photoluminescence and electrochemical properties required for the manufacture of tunable organic LEDs (OLEDs) that can emit in the blue portion of the visible spectrum, thus applying lower voltages and achieving greater efficiency and longer life.

Posted in: News, Electronics & Computers, Energy, Energy Efficiency, Lighting, OLEDs, Manufacturing & Prototyping, Materials

Technique Generates Electricity from Mechanical Vibrations

Research scientists at VTT Technical Research Centre of Finland have demonstrated a new technique for generating electrical energy. The method can be used in harvesting energy from mechanical vibrations of the environment and converting it into electricity. Energy harvesters are needed in wireless self-powered sensors and medical implants, where they could ultimately replace batteries. The technology could be introduced on an industrial scale within three to six years.

Posted in: News, Electronics & Computers, Power Management, Energy, Energy Harvesting, Semiconductors & ICs

Light Bending Material Facilitates Search for New Particles

Particle physicists have a hard time identifying all the elementary particles created in their particle accelerators. But now researchers at Chalmers University of Technology have designed a material that makes it much easier to distinguish the particles.

Posted in: News, Energy, Solar Power, Materials, Optics, Photonics

Solar Material Converts 90 Percent of Captured Light into Heat

A multidisciplinary engineering team at the University of California, San Diego developed a new nanoparticle-based material for concentrating solar power plants designed to absorb and convert to heat more than 90 percent of the sunlight it captures. The new material can also withstand temperatures greater than 700 degrees Celsius and survive many years outdoors in spite of exposure to air and humidity. “We wanted to create a material that absorbs sunlight that doesn’t let any of it escape. We want the black hole of sunlight,” said Sungho Jin, a professor in the department of Mechanical and Aerospace Engineering at UC San Diego Jacobs School of Engineering. Jin, along with professor Zhaowei Liu of the department of Electrical and Computer Engineering, and Mechanical Engineering professor Renkun Chen, developed the Silicon boride-coated nanoshell material. The novel material features a “multiscale” surface created by using particles of many sizes ranging from 10 nanometers to 10 micrometers. The multiscale structures can trap and absorb light which contributes to the material’s high efficiency when operated at higher temperatures.SourceAlso: Read more Materials tech briefs.

Posted in: News, Energy, Energy Efficiency, Solar Power, Materials, Nanotechnology

2-in-1 Motor Increases Range of Electric Cars

Scientists from Nanyang Technological University (NTU) and German Aerospace Centre (DLR) have invented a 2-in-1 electric motor that increases the range of electric vehicles. The engine integrates the traditional electric motor with the air-conditioning compressor, typically two separate units. This novel, space-saving design allows the use of bigger batteries, which can increase the range of electric vehicles by an additional 15 to 20 percent.

Posted in: News, Energy, Energy Efficiency, Manufacturing & Prototyping, Motion Control, Motors & Drives, Automotive, Transportation

Improved Fuel Cells Could Replace Phone and Laptop Batteries

Fuel cells could replace batteries in mobile phones and laptop computers, and the UPV/EHU-University of the Basque Country is looking at ways of enhancing their efficiency. Researchers are designing new ways of obtaining energy in a cleaner, safer, and more affordable way. Fuel cells are totally appropriate systems for substituting the batteries of such devices. They turn the energy resulting from the combining of hydrogen and oxygen into electrical power, with water vapor being the only waste product.

Posted in: News, Electronics & Computers, Power Management, Energy, Energy Efficiency, Energy Storage

Ultra-Thin 3D Display Promises Greater Energy Efficiency

An ultra-thin LCD screen, developed by a group of researchers from the Hong Kong University of Science and Technology, holds three-dimensional images without a power source, making the display technology a compact, energy-efficient way to display visual information.In a traditional LCD, liquid crystal molecules are sandwiched between polarized glass plates. Electrodes pass current through the apparatus, influencing the orientation of the liquid crystals inside and manipulating the way they interact with the polarized light. The new displays ditch the electrodes, simultaneously making the screen thinner and decreasing its energy requirements. Once an image is uploaded to the screen via a flash of light, no power is required to keep it there. Because these so-called bi-stable displays draw power only when the image is changed, they are particularly advantageous in applications where a screen displays a static image for most of the time, such as e-book readers or battery status monitors for electronic devices. “Because the proposed LCD does not have any driving electronics, the fabrication is extremely simple. The bi-stable feature provides a low power consumption display that can store an image for several years,” said researcher Abhishek Srivastava.The researchers, however, went further than creating a simple LCD display; they engineered their screen to display images in 3D. SourceAlso: Learn about a Rapid Prototyping Lab (RPL) Generic Display Engine.

Posted in: News, Electronics & Computers, Energy, Energy Efficiency, Displays/Monitors/HMIs, Imaging

Robots Restore Electricity After Power Outages

A team led by Nina Mahmoudian of Michigan Technological University has developed a tabletop model of a robot team that can bring power to places that need it the most.“If we can regain power in communication towers, then we can find the people we need to rescue,” says Mahmoudian, an assistant professor of mechanical engineering–engineering mechanics. “And the human rescuers can communicate with each other.”Unfortunately, cell towers are often located in hard-to-reach places, she says. “If we could deploy robots there, that would be the first step toward recovery.”The team has programmed robots to restore power in small electrical networks, linking up power cords and batteries to light a little lamp or set a flag to waving with a small electrical motor. The robots operate independently, choosing the shortest path and avoiding obstacles, just as you would want them to if they were hooking up an emergency power source to a cell tower.“Our robots can carry batteries, or possibly a photovoltaic system or a generator,” Mahmoudian said. The team is also working with Wayne Weaver, the Dave House Associate Professor of Electrical Engineering, to incorporate a power converter, since different systems and countries have different electrical requirements. SourceAlso: Learn about Locomotion of Amorphous Surface Robots.

Posted in: News, Communications, Wireless, Batteries, Electronics & Computers, Power Management, Energy, Energy Storage, Solar Power, Automation, Robotics

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.