Development of Real-Time Battery Models for HIL testing of Battery Management Systems

The explosion in the use of electronic devices, electrified vehicles and decentralized power utilities has driven demand for rechargeable batteries. This has led to a significant increase in research investment into battery technologies to address challenges including thermal stability and battery life extension. This whitepaper outlines how such challenges can be overcome in the development of a Hardware-in-the-Loop (HIL) testing system for the Battery Management Systems (BMS) used in electrical energy storage products.

Posted in: White Papers, Electronics


New High Efficiency Piezoelectric Energy Harvesters

If we told you there’s a way to build piezoelectric energy harvesters that can produce more than ten-times the power output of commercial devices vibrating at the same frequency, would you believe us? It’s true! The key is to integrate stacks of polycrystalline lead zirconate-titanate Pb(Zr,Ti)03 (PZT) ceramic in design concepts that amplify your input forces, resulting in higher efficiency. And we’ll show you two ways to do that.

Posted in: On-Demand Webinars, Energy Harvesting


White, Electrically Conductive, Radiation-Stable, Thermal Control Coating

Goddard Space Flight Center, Greenbelt, Maryland A highly reflective, white conductive coating system was developed using a layered approach with a combination of commercially available white conductive pigments within a conductive binder system. The top coating is a space-stable, radiation-resistant, highly reflective coating that has been tailored to provide optimum reflectance properties and meet vacuum thermal surface resistivities. The combined layer is a mixture of a highly reflective, electrically dissipative coating and a moderately reflective but highly conductive pigment in a conductive binder. A second, underlying layer of conductive white coating offers optimum adhesion to metal substrates and the topcoat. The system vacuum resistivity at room temperature is approximately 1 × 109 ohms/sq, and has a solar absorptance of less than 0.13 as measured on a Cary 5000 spectrophotometer.

Posted in: Briefs, TSP, Thermoelectrics, Coatings & Adhesives


Piezoelectric Actuated Inchworm Motor (PAIM)

This linear piezoelectric actuator can operate at temperatures of 77 K or below. NASA’s Jet Propulsion Laboratory, Pasadena, California Conventional piezoelectric materials, such as PZTs, have reasonably high electromechanical coupling over 70%, and excellent performance at room temperature. However, their coupling factor (converting electrical to mechanical energy and vice versa) drops substantially at cryogenic temperatures, as the extrinsic contributions (domain wall motions) are almost frozen out below 130 K.

Posted in: Briefs, TSP, Fluid Handling, Motors & Drives


Optical Fiber for Solar Cells

These materials enable new solar-powered devices that are small, lightweight, and can be used without connection to existing electrical grids. Ames Research Center, Moffett Field, California Polymeric and inorganic semiconductors offer relatively high quantum efficiencies, and are much less expensive and versatile to fabricate than non-amorphous silicon wafers. An optical fiber and cladding can be designed and fabricated to confine light for transport within ultraviolet and near-infrared media, using evanescent waves, and to transmit visible wavelength light for direct lighting.

Posted in: Briefs, Energy Storage, Solar Power, Fiber Optics


Pumped Subsea Energy Storage

This technique would be applicable to offshore oil platforms and energy storage for public utilities. NASA’s Jet Propulsion Laboratory, Pasadena, California A local energy source is desired for near-shore and offshore applications. Gas generators, diesel generators, and long-length submerged power cables tend to be expensive. A proposed solution is to use offshore wind with some type of energy storage mechanism for up to 1 GW-h. Energy storage in batteries is too expensive and massive, and subsea compressed air energy storage (CAES) has not been proven for very deep depths. Furthermore, CAES involves very great temperature changes that result in large inefficiencies.

Posted in: Briefs, TSP, Energy Efficiency, Energy Storage, Solar Power, Wind Power


Carbon Nanotube Tower-Based Supercapacitor

A new technology to create electrochemical double-layer supercapacitors is provided using carbon nanotubes as electrodes of the storage medium. This invention allows efficient transport between the capacitor electrodes through the porous nature of the nanotubes, and has a low interface resistance between the electrode material and the collector. Carbon nanotubes directly grown on a metal surface are used to improve the supercapacitor performance. The nanotubes offer a high surface area and usable porosity for a given volume and mass, both of which are highly desirable for supercapacitor operation.

Posted in: Briefs, Energy Storage


White Papers

Reliability Testing of GORE® Protective Vents in Telecommunication Enclosures
Sponsored by Gore
Spectrum Analyzer Fundamentals – Theory and Operation of Modern Spectrum Analyzers
Sponsored by rohde and schwarz a and d
Hermetic Feedthroughs Safeguard Mission-Critical Electronics
Sponsored by douglas electrical components
Sterilization of Medical Equipment
Sponsored by master bond
The Changing Face of Robotics
Sponsored by maplesoft
The Need for Speed
Sponsored by flir

White Papers Sponsored By: