Energy

Harnessing the Power of Spinach

Vanderbilt University researches have developed a way to combine Photosystem 1 (PS1), the photosynthetic protein that converts light into electrochemical energy in spinach with silicon (the material used in solar cells), in a fashion that produces substantially more electrical current than has been reported by previous biohybrid solar cells.

Posted in: Electronics, Solar Power, Renewable Energy, Energy Harvesting, News

Read More >>

Starting Point for Overcoming Barrier to Fusion Power

The accuracy of a new model for predicting the size of a key barrier to fusion power, which was developed by physicist Robert Goldston of the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), has been confirmed. Goldston’s model predicts the width of what physicists call the “scrape-off layer” in tokamaks, the most widely used fusion facilities.

Posted in: Power Management, Energy, News

Read More >>

Promoting Virtual Power Plants for Efficient Renewable Energy Production

Researchers from the School of Electronics and Computer Science (ECS) at the University of Southampton have devised a novel method for forming virtual power plants (VPPs) to provide renewable energy production in the UK. Small and distributed energy resources (DERs), such as wind farms and solar panels, have been appearing in greater numbers in the electricity supply network (Grid).

Posted in: Smart Grid, Software, Mathematical/Scientific Software, Solar Power, Wind Power, Renewable Energy, News

Read More >>

Advancement in Highly Conductive, Transparent Thin Film

Thin, conductive films are useful in displays and solar cells. A new solution-based chemistry developed at Brown University for making indium tin oxide films could allow engineers to employ a much simpler and cheaper manufacturing process.

Posted in: Solar Power, Energy Efficiency, Renewable Energy, News

Read More >>

The Future of Iron-Air Batteries

A University of Southern California research team has developed a cheap, rechargeable battery that could be used to store energy at solar power plants for a rainy day. The air-breathing battery uses the chemical energy generated by the oxidation of iron plates that are exposed to the oxygen in the air — a process similar to rusting.

Posted in: Batteries, Energy Storage, Solar Power, Energy Efficiency, News

Read More >>

Record Efficiency for Next-Generation Solar Cells

Researchers from the University of Toronto (U of T) and King Abdullah University of Science & Technology (KAUST) have made a breakthrough in the development of colloidal quantum dot (CQD) films. The researchers created a solar cell out of inexpensive materials that was certified at a world-record 7.0% efficiency.

Posted in: Solar Power, Energy Efficiency, Renewable Energy, Semiconductors & ICs, Nanotechnology, News

Read More >>

New Tech for Grid-Level Electrical Energy Storage

Electrical energy storage is the obstacle preventing more widespread use of renewable energy sources. Due to the unpredictable nature of wind and solar energy, the ability to store this energy when it is produced is essential for turning these resources into reliable sources of energy. The current U.S. energy grid system is used predominantly for distributing energy and allows little flexibility for storage of excess or a rapid dispersal on short notice. Drexel University researchers believe they have a solution.

Posted in: Batteries, Energy Storage, Solar Power, Wind Power, Energy Efficiency, Renewable Energy, Energy, News

Read More >>