Energy

Solid-State Ultracapacitor

NASA’s Marshall Space Flight Center has developed a solid-state ultracapacitor utilizing a novel nanocomposite dielectric material. The material’s design is based on the internal barrier layer capacitance (IBLC) concept, and it uses novel dielectric and metallic conductive ink formulations.

Posted in: Briefs, Energy, Physical Sciences, Ultracapacitors and supercapacitors, Composite materials, Nanomaterials

Read More >>

Double-acting Extremely Light Thermo-Acoustic (DELTA) Converter

This technology enables a new class of lightweight power systems for small aircraft, camping, or micro-cogeneration that is small, quiet, efficient, and essentially maintenance-free.Power generation from an external or internal heat source using thermal energy conversion technologies such as solid-state thermionics and thermoelectrics or dynamic conversion with Otto, Stirling, Brayton, or Rankine technologies is fundamentally limited in maximum specific power due to either low efficiency and/or operating frequency. These solid-state technologies are low voltage and hence produce a high DC current that restricts their minimum geometry to approximately 4 A/mm2 to avoid overheating. High-power implementations of this technology class are inefficient, large, and heavy.

Posted in: Briefs, Energy

Read More >>

Chassis Short Mitigation and Characterization Technique for the Multi-Mission Radioisotope Thermoelectric Generator

The radioisotope thermoelectric generator (RTG) is a flight-proven, capable source of power that reliably converts heat into electricity. NASA and the Department of Energy (DoE) have developed a new generation of such power systems that could be used for a variety of space missions. The newest RTG, called a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), has been designed to operate on Mars and in the vacuum of space. However, shorts between the internal electrical power circuit and chassis frame of the MMRTG have been observed in the engineering unit, qualification unit, and flight unit. The internal shorts seemed to appear and sometimes clear spontaneously. A root cause has not been determined for these internal shorts, and their resistance, power rating, and energy rating are largely unknown. A mitigation and measurement technique is needed.

Posted in: Briefs, Energy

Read More >>

New Material Increases Lifetime of Solar-Powered Electrons

Nobody wants a laptop computer that stops working when a cloud passes by. Storing sunlight as fuel that can be later used to drive fuel cells requires new materials. Scientists demonstrated just such a material by combining two oxides on the atomic scale.

Posted in: Articles, News, Energy, Energy Storage, Materials

Read More >>

Scenario Power Load Analysis Tool (SPLAT) MagicDraw Plug-in

The SPLAT tool could be applied to any project that needs to track time-dependent power consumption; it computes power usage profiles based on modeled component information and scenarios.NASA’s Jet Propulsion Laboratory, Pasadena, CaliforniaPower consumption during all phases of spacecraft flight is of great interest to the aerospace community. As a result, significant analysis effort is exerted by both system and electrical-domain engineers to understand the rates of electrical energy generation and consumption under many operational scenarios of the system. Previously, no standard tool existed for creating and maintaining a Power Equipment List (PEL) of spacecraft components that consume power, and no standard tool existed for generating power load profiles based on this PEL information during mission design phases. Projects have traditionally either developed ad-hoc spreadsheet-based tools, or adapted complex simulation tools to compute such resource predictions; both of these approaches have significant limitations.

Posted in: Briefs, Power Management, Energy, Energy Storage, Computer software and hardware, Energy consumption, Aircraft operations, Spacecraft

Read More >>

Wideband, GaN MMIC, Distributed Amplifier-Based Microwave Power Module

The solid-state module operates as a radar, communication, or navigation system.John H. Glenn Research Center, Cleveland, OhioHistorically, the term microwave power module (MPM) has been associated with a small, fully integrated, self-contained radio frequency (RF) amplifier that combines both solid-state and microwave vacuum electronics technologies. Typically, the output power of these MPMs is on the order of about 100 Watts CW over an octave bandwidth. The MPMs require both a solid-state amplifier at the front end and a microwave vacuum electronics amplifier at the back end. However, such MPMs cannot be utilized for communications because the MPMs are not optimized for linearity or efficiency. Also, the MPMs can be very expensive to manufacture, particularly when modules are produced in very small quantities for space applications. Also, a kilovolt (kV) class power supply is required to power the traveling-wave tube amplifier, which is a part of the microwave vacuum electronics.

Posted in: Briefs, Power Management, Energy, Energy Storage, Amplifiers, Architecture, Product development, Radiation

Read More >>

Integrated Solar Array Power Management System

Marshall Space Flight Center, AlabamaWhen solar cells are electrically connected to form solar arrays, they are organized into strings. Each string represents a specific number of cells connected in series to produce a specific voltage. The strings are then connected in parallel to add their currents to meet the array power requirement. This requires that the strings have the same voltage. Blocking diodes are used to take out strings with voltage that is too low, resulting in loss of power. When the arrays are mounted to a non-coplanar surface such as a spacecraft body or inflatable structure, many strings will have voltages lower than the rated voltage. This regulator manages the voltage of each string individually so that its power may be used, regardless of its voltage. It does this by converting each string’s energy into a series of high-voltage pulses that charges a reservoir capacitor to one of a set of common voltages used by the spacecraft bus. This allows for use of all of the illuminated strings in producing well-regulated power at pre-programmed voltages.

Posted in: Briefs, Power Management, Energy, Energy Storage, Architecture, Capacitors, Voltage regulators, Solar energy, Spacecraft

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.