Energy

A New Generation of Cooling

Energy efficiency is key to the total cost of ownership of enclosure climate control solutions, and electricity consumption is a major element of operating costs. Hybrid technology, developed and patented by Rittal, combines conventional compression cooling, similar to what has been used in traditional air conditioners, with a heat pipe. The heat pipe uses evaporation of a working fluid in an evacuated tube.

Posted in: Articles, Energy Efficiency

Read More >>

Optimizing Performance with Technology Embedded Apparel

Intercomp USA’s latest e-book delves into the smart garment market and how sensors are crucial for making garments smart. More importantly, Intercomp reveals an exciting new technology called tailored fiber placement (TFP), available through its partnership with LayStitch. TFP promises to help with smart garment production and will enable aerospace, automotive and other equipment manufacturers to produce parts that are lighter, stronger and less expensive. Click here to download your FREE copy today or visit intercomp.com to learn more.

Posted in: White Papers, Aeronautics, Electronics & Computers, Energy, Medical

Read More >>

Solar-Powered Water Purification System Supports Remote Village

For nearly two years, residents of the remote Mexican village of La Mancalona, most of whom are subsistence farmers, have operated and maintained a solar-powered water purification system engineered by researchers at the Massachusetts Institute of Technology (MIT).

Posted in: News, Solar Power

Read More >>

White, Electrically Conductive, Radiation-Stable, Thermal Control Coating

Goddard Space Flight Center, Greenbelt, Maryland A highly reflective, white conductive coating system was developed using a layered approach with a combination of commercially available white conductive pigments within a conductive binder system. The top coating is a space-stable, radiation-resistant, highly reflective coating that has been tailored to provide optimum reflectance properties and meet vacuum thermal surface resistivities. The combined layer is a mixture of a highly reflective, electrically dissipative coating and a moderately reflective but highly conductive pigment in a conductive binder. A second, underlying layer of conductive white coating offers optimum adhesion to metal substrates and the topcoat. The system vacuum resistivity at room temperature is approximately 1 × 109 ohms/sq, and has a solar absorptance of less than 0.13 as measured on a Cary 5000 spectrophotometer.

Posted in: Briefs, TSP, Thermoelectrics, Coatings & Adhesives, Materials

Read More >>

Piezoelectric Actuated Inchworm Motor (PAIM)

This linear piezoelectric actuator can operate at temperatures of 77 K or below. NASA’s Jet Propulsion Laboratory, Pasadena, California Conventional piezoelectric materials, such as PZTs, have reasonably high electromechanical coupling over 70%, and excellent performance at room temperature. However, their coupling factor (converting electrical to mechanical energy and vice versa) drops substantially at cryogenic temperatures, as the extrinsic contributions (domain wall motions) are almost frozen out below 130 K.

Posted in: Briefs, TSP, Energy, Fluid Handling, Motors & Drives

Read More >>

Optical Fiber for Solar Cells

These materials enable new solar-powered devices that are small, lightweight, and can be used without connection to existing electrical grids. Ames Research Center, Moffett Field, California Polymeric and inorganic semiconductors offer relatively high quantum efficiencies, and are much less expensive and versatile to fabricate than non-amorphous silicon wafers. An optical fiber and cladding can be designed and fabricated to confine light for transport within ultraviolet and near-infrared media, using evanescent waves, and to transmit visible wavelength light for direct lighting.

Posted in: Briefs, Energy, Energy Storage, Solar Power, Materials, Fiber Optics, Physical Sciences

Read More >>

Pumped Subsea Energy Storage

This technique would be applicable to offshore oil platforms and energy storage for public utilities. NASA’s Jet Propulsion Laboratory, Pasadena, California A local energy source is desired for near-shore and offshore applications. Gas generators, diesel generators, and long-length submerged power cables tend to be expensive. A proposed solution is to use offshore wind with some type of energy storage mechanism for up to 1 GW-h. Energy storage in batteries is too expensive and massive, and subsea compressed air energy storage (CAES) has not been proven for very deep depths. Furthermore, CAES involves very great temperature changes that result in large inefficiencies.

Posted in: Briefs, TSP, Energy, Energy Efficiency, Energy Storage, Solar Power, Wind Power, Physical Sciences

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.