Articles

Designing Electro-Optical Sensors Using Collaborative Systems Engineering Technology

About 25% of space-borne electro-optical (EO) sensor programs in both the civil and National Security Space (NSS) communities have experienced reduced on-orbit reliability, as well as cost and schedule overruns of 100% or more1-3. Many of these EO sensor program over-runs can be largely attributed to delays, errors, and inadequate communication that occur at the many handoff points between team members and contractors in the current design process. This leads to the late discovery of technical problems, making them more expensive and time-consuming to fix.

Posted in: Articles, Features, ptb catchall, Photonics

Read More >>

Choosing the Right Camera for Thermography Projects

Infrared (IR) thermography is an indispensable tool for studying dynamic thermal phenomena. This type of imaging is accomplished with an IR camera (Figure 1) that converts infrared radiation into a visual image depicting temperature variations across an object or scene. In addition, a good IR camera makes accurate (±1°C to ±2°C) non-contact measurements of the object’s temperatures.

Posted in: Imaging, Articles

Read More >>

Hydrogen Reclamation and Reutilization

John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA’s space programs. Since the development of the space shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the space shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently baselined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper-stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.

Posted in: Articles

Read More >>

Digital Video Recording and Analysis With Laser Targeting

Munitions accuracy provides an advantage in leveraging and applying force and has been sought after by political and military strategists for decades. Reflecting recent advances in technology, during Gulf Wars I and II, Americans watched video on the news of U.S. precision-guided bombs destroying tanks, flying through windows, and exacting coordinates on bridges utilizing laser-guided targeting. Yet, we forget the past challenges associated with target acquisition and destruction.

Posted in: Imaging, Articles

Read More >>

Comparing Emissivity Evaluation Methods for Infrared Sources



Posted in: Articles

Read More >>

Industrial PCs Offer Configurable System Options and Quad-Core Performance

Industrial PCs (IPCs) are all about performance, including processors, mass storage performance, and network throughput. In all applications — medical, communications, automation, process control, transportation, military and defense, and more — bandwidth requirements for data transmission and processing are on the rise. Long-term use, low-level noise tolerance, ruggedness for shock and vibration, extended availability of additional systems — these are just some of the top-level requirements that must be considered in pairing the right industrial solution to the right application.

Posted in: Articles

Read More >>

NASA Awards 2008 Software of the Year

NASA’s Glenn Research Center (Cleveland, OH) and Boeing employees have won the 2008 NASA Software of the Year Award for the development of a general-purpose program used to perform trajectory optimization and performance studies for a wide variety of vehicles including aircraft, rockets, satellites, and interplanetary vehicles. The Software of the Year Award recognizes developers of exceptional software created for or by NASA and owned by NASA.

Posted in: Articles

Read More >>